When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Poincaré half-plane model - Wikipedia

    en.wikipedia.org/wiki/Poincaré_half-plane_model

    The metric of the model on the half-plane, { , >}, is: = + ()where s measures the length along a (possibly curved) line. The straight lines in the hyperbolic plane (geodesics for this metric tensor, i.e., curves which minimize the distance) are represented in this model by circular arcs perpendicular to the x-axis (half-circles whose centers are on the x-axis) and straight vertical rays ...

  3. Upper half-plane - Wikipedia

    en.wikipedia.org/wiki/Upper_half-plane

    ⁠ The lower half-plane is the set of points ⁠ (,) ⁠ with ⁠ < ⁠ instead. Arbitrary oriented half-planes can be obtained via a planar rotation. Half-planes are an example of two-dimensional half-space. A half-plane can be split in two quadrants.

  4. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    Equation [3] involves the average velocity ⁠ v + v 0 / 2 ⁠. Intuitively, the velocity increases linearly, so the average velocity multiplied by time is the distance traveled while increasing the velocity from v 0 to v, as can be illustrated graphically by plotting velocity against time as a straight line graph. Algebraically, it follows ...

  5. Half-space (geometry) - Wikipedia

    en.wikipedia.org/wiki/Half-space_(geometry)

    A half-space can be either open or closed. An open half-space is either of the two open sets produced by the subtraction of a hyperplane from the affine space. A closed half-space is the union of an open half-space and the hyperplane that defines it. The open (closed) upper half-space is the half-space of all (x 1, x 2, ..., x n) such that x n > 0

  6. Dihedral angle - Wikipedia

    en.wikipedia.org/wiki/Dihedral_angle

    In this case, the half planes can be described by a point P of their intersection, and three vectors b 0, b 1 and b 2 such that P + b 0, P + b 1 and P + b 2 belong respectively to the intersection line, the first half plane, and the second half plane. The dihedral angle of these two half planes is defined by

  7. Euclidean planes in three-dimensional space - Wikipedia

    en.wikipedia.org/wiki/Euclidean_planes_in_three...

    Conversely, it is easily shown that if a, b, c, and d are constants and a, b, and c are not all zero, then the graph of the equation + + + =, is a plane having the vector n = (a, b, c) as a normal. [5] This familiar equation for a plane is called the general form of the equation of the plane or just the plane equation. [6]

  8. Motion graphs and derivatives - Wikipedia

    en.wikipedia.org/wiki/Motion_graphs_and_derivatives

    Since the velocity of the object is the derivative of the position graph, the area under the line in the velocity vs. time graph is the displacement of the object. (Velocity is on the y-axis and time on the x-axis. Multiplying the velocity by the time, the time cancels out, and only displacement remains.)

  9. Hesse normal form - Wikipedia

    en.wikipedia.org/wiki/Hesse_normal_form

    Distance from the origin O to the line E calculated with the Hesse normal form. Normal vector in red, line in green, point O shown in blue. In analytic geometry, the Hesse normal form (named after Otto Hesse) is an equation used to describe a line in the Euclidean plane, a plane in Euclidean space, or a hyperplane in higher dimensions.