Search results
Results From The WOW.Com Content Network
The metric of the model on the half-plane, { , >}, is: = + ()where s measures the length along a (possibly curved) line. The straight lines in the hyperbolic plane (geodesics for this metric tensor, i.e., curves which minimize the distance) are represented in this model by circular arcs perpendicular to the x-axis (half-circles whose centers are on the x-axis) and straight vertical rays ...
The first equation shows that, after one second, an object will have fallen a distance of 1/2 × 9.8 × 1 2 = 4.9 m. After two seconds it will have fallen 1/2 × 9.8 × 2 2 = 19.6 m; and so on. On the other hand, the penultimate equation becomes grossly inaccurate at great distances.
The lower half-plane is the set of points (,) with < instead. Arbitrary oriented half-planes can be obtained via a planar rotation. Half-planes are an example of two-dimensional half-space. A half-plane can be split in two quadrants.
In gravitationally bound systems, the orbital speed of an astronomical body or object (e.g. planet, moon, artificial satellite, spacecraft, or star) is the speed at which it orbits around either the barycenter (the combined center of mass) or, if one body is much more massive than the other bodies of the system combined, its speed relative to the center of mass of the most massive body.
d is the total horizontal distance travelled by the projectile. v is the velocity at which the projectile is launched; g is the gravitational acceleration—usually taken to be 9.81 m/s 2 (32 f/s 2) near the Earth's surface; θ is the angle at which the projectile is launched; y 0 is the initial height of the projectile
In geometry, a half-space is either of the two parts into which a plane divides the three-dimensional Euclidean space. [1] If the space is two-dimensional, then a half-space is called a half-plane (open or closed). [2] [3] A half-space in a one-dimensional space is called a half-line [4] or ray.
The range equation reduces to: = where =; here is the specific heat constant of air 287.16 J/kg K (based on aviation standards) and = / = (derived from = and = +). c p {\displaystyle c_{p}} and c v {\displaystyle c_{v}} are the specific heat capacities of air at constant pressure and constant volume respectively.
As we can see from the figure illustrating the Rindler wedge, the locus x = 0 in the Rindler chart corresponds to the locus T 2 = X 2, X > 0 in the Cartesian chart, which consists of two null half-planes, each ruled by a null geodesic congruence. For the moment, we simply consider the Rindler horizon as the boundary of the Rindler coordinates.