Search results
Results From The WOW.Com Content Network
More generally, one may define upper bound and least upper bound for any subset of a partially ordered set X, with “real number” replaced by “element of X ”. In this case, we say that X has the least-upper-bound property if every non-empty subset of X with an upper bound has a least upper bound in X.
Then has an upper bound (, for example, or ) but no least upper bound in : If we suppose is the least upper bound, a contradiction is immediately deduced because between any two reals and (including and ) there exists some rational , which itself would have to be the least upper bound (if >) or a member of greater than (if <).
If (,) is a partially ordered set, such that each pair of elements in has a meet, then indeed = if and only if , since in the latter case indeed is a lower bound of , and since is the greatest lower bound if and only if it is a lower bound. Thus, the partial order defined by the meet in the universal algebra approach coincides with the original ...
On the other hand, / is a positive infinitesimal, since by the definition of least upper bound there must be an infinitesimal between / and , and if / < / then is not infinitesimal. But 1 / ( 4 n ) < c / 2 {\displaystyle 1/(4n)<c/2} , so c / 2 {\displaystyle c/2} is not infinitesimal, and this is a contradiction.
A lattice is an abstract structure studied in the mathematical subdisciplines of order theory and abstract algebra.It consists of a partially ordered set in which every pair of elements has a unique supremum (also called a least upper bound or join) and a unique infimum (also called a greatest lower bound or meet).
There may be elements, besides the least element, that have no predecessor (see § Natural numbers below for an example). A well-ordered set S contains for every subset T with an upper bound a least upper bound, namely the least element of the subset of all upper bounds of T in S. If ≤ is a non-strict well ordering, then < is a strict well ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
A complete lattice is a partially ordered set (L, ≤) such that every subset A of L has both a greatest lower bound (the infimum, or meet) and a least upper bound (the supremum, or join) in (L, ≤). The meet is denoted by , and the join by .