Search results
Results From The WOW.Com Content Network
Braking distance refers to the distance a vehicle will travel from the point when its brakes are fully applied to when it comes to a complete stop. It is primarily affected by the original speed of the vehicle and the coefficient of friction between the tires and the road surface, [Note 1] and negligibly by the tires' rolling resistance and vehicle's air drag.
d MT = braking distance, m (ft) V = design speed, km/h (mph) a = deceleration rate, m/s 2 (ft/s 2) Actual braking distances are affected by the vehicle type and condition, the incline of the road, the available traction, and numerous other factors. A deceleration rate of 3.4 m/s 2 (11.2 ft/s 2) is used to determine stopping sight distance. [6]
British Railway Class 90 infobox showing brake force Brake force to weight ratio of the Class 67 is higher than some other locomotives. In the case of railways, it is important that staff are aware of the brake force of a train so sufficient brake power will be available to bring the train to a halt within the required distance from a given speed.
The two-second rule is useful as it can be applied to any speed. Drivers can find it difficult to estimate the correct distance from the car in front, let alone remember the stopping distances that are required for a given speed, or to compute the equation on the fly. The two-second rule provides a simpler way of perceiving the distance.
Disk electromagnetic brakes are used on vehicles such as trains, and power tools such as circular saws, to stop the blade quickly when the power is turned off.A disk eddy current brake consists of a conductive non-ferromagnetic metal disc attached to the axle of the vehicle's wheel, with an electromagnet located with its poles on each side of the disk, so the magnetic field passes through the ...
The distance (or perpendicular distance) from a point to a line is the shortest distance from a fixed point to any point on a fixed infinite line in Euclidean geometry. It is the length of the line segment which joins the point to the line and is perpendicular to the line. The formula for calculating it can be derived and expressed in several ways.
The brake balance or brake bias of a vehicle is the distribution of brake force at the front and rear tires, and may be given as the percentage distributed to the front brakes (e.g. 52%) [1] or as the ratio of front and rear percentages (e.g. 52/48). [2]
The Bethe formula is only valid for energies high enough so that the charged atomic particle (the ion) does not carry any atomic electrons with it. At smaller energies, when the ion carries electrons, this reduces its charge effectively, and the stopping power is thus reduced. But even if the atom is fully ionized, corrections are necessary.