Search results
Results From The WOW.Com Content Network
Indium-111 (111 In) is a radioactive isotope of indium (In). It decays by electron capture to stable cadmium-111 with a half-life of 2.8 days. [3] Indium-111 chloride (111 InCl) solution is produced by proton irradiation of a cadmium target (112 Cd(p,2n) or 111 Cd(p,n)) in a cyclotron, as recommended by International Atomic Energy Agency (IAEA). [4]
Indium (49 In) consists of two primordial nuclides, with the most common (~ 95.7%) nuclide (115 In) being measurably though weakly radioactive. Its spin-forbidden decay has a half-life of 4.41×10 14 years, much longer than the currently accepted age of the Universe. The stable isotope 113 In is only 4.3% of
The darker more stable isotope region departs from the line of protons (Z) = neutrons (N), as the element number Z becomes larger. ... indium: 1: 1: 115 In: 113 In: 57:
Stable even–even nuclides number as many as three isobars for some mass numbers, and up to seven isotopes for some atomic numbers. Conversely, of the 251 known stable nuclides, only five have both an odd number of protons and odd number of neutrons: hydrogen-2 , lithium-6, boron-10, nitrogen-14, and tantalum-180m.
The stable indium isotope, indium-113, is one of the p-nuclei, the origin of which is not fully understood; although indium-113 is known to be made directly in the s- and r-processes (rapid neutron capture), and also as the daughter of very long-lived cadmium-113, which has a half-life of about eight quadrillion years, this cannot account for ...
What links here; Related changes; Upload file; Special pages; Permanent link; Page information; Cite this page; Get shortened URL; Download QR code
The number of protons (Z column) and number of neutrons (N column). energy column The column labeled "energy" denotes the energy equivalent of the mass of a neutron minus the mass per nucleon of this nuclide (so all nuclides get a positive value) in MeV , formally: m n − m nuclide / A , where A = Z + N is the mass number.
The only stable nuclides having an odd number of protons and an odd number of neutrons are hydrogen-2, lithium-6, boron-10, nitrogen-14 and (observationally) tantalum-180m. This is because the mass–energy of such atoms is usually higher than that of their neighbors on the same isobaric chain, so most of them are unstable to beta decay .