When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Perceptron - Wikipedia

    en.wikipedia.org/wiki/Perceptron

    In the context of neural networks, a perceptron is an artificial neuron using the Heaviside step function as the activation function. The perceptron algorithm is also termed the single-layer perceptron , to distinguish it from a multilayer perceptron , which is a misnomer for a more complicated neural network.

  3. Perceptrons (book) - Wikipedia

    en.wikipedia.org/wiki/Perceptrons_(book)

    The perceptron is a neural net developed by psychologist Frank Rosenblatt in 1958 and is one of the most famous machines of its period. [11] [12] In 1960, Rosenblatt and colleagues were able to show that the perceptron could in finitely many training cycles learn any task that its parameters could embody.

  4. Mark I Perceptron - Wikipedia

    en.wikipedia.org/wiki/Mark_I_Perceptron

    The Mark I Perceptron, from its operator's manual. The Mark I Perceptron was a pioneering supervised image classification learning system developed by Frank Rosenblatt in 1958. It was the first implementation of an Artificial Intelligence (AI) machine.

  5. Feedforward neural network - Wikipedia

    en.wikipedia.org/wiki/Feedforward_neural_network

    A multilayer perceptron (MLP) is a misnomer for a modern feedforward artificial neural network, consisting of fully connected neurons (hence the synonym sometimes used of fully connected network (FCN)), often with a nonlinear kind of activation function, organized in at least three layers, notable for being able to distinguish data that is not ...

  6. Backpropagation - Wikipedia

    en.wikipedia.org/wiki/Backpropagation

    Backpropagation neural network tutorial at the Wikiversity; Bernacki, Mariusz; Włodarczyk, Przemysław (2004). "Principles of training multi-layer neural network using backpropagation". Karpathy, Andrej (2016). "Lecture 4: Backpropagation, Neural Networks 1". CS231n. Stanford University. Archived from the original on 2021-12-12 – via YouTube.

  7. Activation function - Wikipedia

    en.wikipedia.org/wiki/Activation_function

    In quantum neural networks programmed on gate-model quantum computers, based on quantum perceptrons instead of variational quantum circuits, the non-linearity of the activation function can be implemented with no need of measuring the output of each perceptron at each layer.

  8. Kernel perceptron - Wikipedia

    en.wikipedia.org/wiki/Kernel_perceptron

    Plugging these two equations into the training loop turn it into the dual perceptron algorithm. Finally, we can replace the dot product in the dual perceptron by an arbitrary kernel function, to get the effect of a feature map Φ without computing Φ(x) explicitly for any samples. Doing this yields the kernel perceptron algorithm: [4]

  9. Multilayer perceptron - Wikipedia

    en.wikipedia.org/wiki/Multilayer_perceptron

    In deep learning, a multilayer perceptron (MLP) is a name for a modern feedforward neural network consisting of fully connected neurons with nonlinear activation functions, organized in layers, notable for being able to distinguish data that is not linearly separable.