Search results
Results From The WOW.Com Content Network
Orange is an open-source software package released under GPL and hosted on GitHub.Versions up to 3.0 include core components in C++ with wrappers in Python.From version 3.0 onwards, Orange uses common Python open-source libraries for scientific computing, such as numpy, scipy and scikit-learn, while its graphical user interface operates within the cross-platform Qt framework.
OpenNN: Open neural networks library. Orange: A component-based data mining and machine learning software suite written in the Python language. PSPP: Data mining and statistics software under the GNU Project similar to SPSS; R: A programming language and software environment for statistical computing, data mining, and graphics.
ELKI – data mining framework with many clustering algorithms; Keras - neural network library; Orange - an open-source data visualization, machine learning and data mining toolkit with a similar visual programming front-end; List of free and open-source software packages
OpenNN – Open-source neural network software library written in C++; Orange (software) – Data visualization and data mining for novice and experts, through visual programming or Python scripting. Extensions for bioinformatics and text mining
For many years, sequence modelling and generation was done by using plain recurrent neural networks (RNNs). A well-cited early example was the Elman network (1990). In theory, the information from one token can propagate arbitrarily far down the sequence, but in practice the vanishing-gradient problem leaves the model's state at the end of a long sentence without precise, extractable ...
Decision tree learning is a supervised learning approach used in statistics, data mining and machine learning.In this formalism, a classification or regression decision tree is used as a predictive model to draw conclusions about a set of observations.
For example, a neural network may be more effective than a linear regression model for some types of data. [14] Increase the amount of training data: If the model is underfitting due to a lack of data, increasing the amount of training data may help. This will allow the model to better capture the underlying patterns in the data. [14]
The standard algorithm for hierarchical agglomerative clustering (HAC) has a time complexity of () and requires () memory, which makes it too slow for even medium data sets. . However, for some special cases, optimal efficient agglomerative methods (of complexity ()) are known: SLINK [2] for single-linkage and CLINK [3] for complete-linkage clusteri