Search results
Results From The WOW.Com Content Network
It is more hydrogen-dense than liquid hydrogen and also able to exist at normal temperatures and pressures. [17] Ammonia borane finds some use in organic synthesis as an air-stable derivative of diborane. [18] It can be used as a reducing agent in transfer hydrogenation reactions, often in the presence of a transition metal catalyst. [19]
The reaction commences with the formation of the aquo adduct, H 2 O−BF 3, which then loses HF that gives fluoroboric acid with boron trifluoride. [22] 4 BF 3 + 3 H 2 O → 3 H[BF 4] + B(OH) 3. The heavier trihalides do not undergo analogous reactions, possibly due to the lower stability of the tetrahedral ions [BCl 4] − and [BBr 4] −.
Ethylene (IUPAC name: ethene) is a hydrocarbon which has the formula C 2 H 4 or H 2 C=CH 2. It is a colourless, flammable gas with a faint "sweet and musky " odour when pure. [ 7 ] It is the simplest alkene (a hydrocarbon with carbon–carbon double bonds ).
Borane ammoniate, which is produced by a displacement reaction of other borane adducts, eliminates elemental hydrogen on heating to give borazine (HBNH) 3. [12] Borane adducts are widely used in organic synthesis for hydroboration, where BH 3 adds across the C=C bond in alkenes to give trialkylboranes: [13] (THF)BH 3 + 3 CH 2 =CHR → B(CH 2 CH ...
[1] [2] [3] Introduced by Gilbert N. Lewis in his 1916 article The Atom and the Molecule, a Lewis structure can be drawn for any covalently bonded molecule, as well as coordination compounds. [4] Lewis structures extend the concept of the electron dot diagram by adding lines between atoms to represent shared pairs in a chemical bond.
Bonding diagram of diborane (B 2 H 6) showing with curved lines a pair of three-center two-electron bonds, each of which consists of a pair of electrons bonding three atoms; two boron atoms and a hydrogen atom in the middle. The structure of diborane has D 2h symmetry. Four hydrides are terminal, while two bridge between the boron centers.
The interaction also causes carbon atoms to "rehybridise" from sp 2 towards sp 3, which is indicated by the bending of the hydrogen atoms on the ethylene back away from the metal. [4] In silico calculations show that 75% of the binding energy is derived from the forward donation and 25% from backdonation. [ 5 ]
Wilkinson's catalyst is best known for catalyzing the hydrogenation of olefins with molecular hydrogen. [ 11 ] [ 12 ] The mechanism of this reaction involves the initial dissociation of one or two triphenylphosphine ligands to give 14- or 12-electron complexes, respectively, followed by oxidative addition of H 2 to the metal.