Search results
Results From The WOW.Com Content Network
This can be done by showing that other rules, that were thought to be primary, are based on these rules. The dictum de omni is the highest principle of affirmative syllogisms. It says: Whatever is universally affirmed of a concept is also affirmed of everything contained under it. This is grounded on the rule of affirmative ratiocination.
The rule states that a syllogism in which both premises are of form a or i (affirmative) cannot reach a conclusion of form e or o (negative). Exactly one of the premises must be negative to construct a valid syllogism with a negative conclusion. (A syllogism with two negative premises commits the related fallacy of exclusive premises.)
The name "disjunctive syllogism" derives from its being a syllogism, a three-step argument, and the use of a logical disjunction (any "or" statement.) For example, "P or Q" is a disjunction, where P and Q are called the statement's disjuncts. The rule makes it possible to eliminate a disjunction from a logical proof. It is the rule that
A syllogism (Ancient Greek: συλλογισμός, syllogismos, 'conclusion, inference') is a kind of logical argument that applies deductive reasoning to arrive at a conclusion based on two propositions that are asserted or assumed to be true.
Another form of argument is known as modus tollens (commonly abbreviated MT). In this form, you start with the same first premise as with modus ponens. However, the second part of the premise is denied, leading to the conclusion that the first part of the premise should be denied as well. It is shown below in logical form. If A, then B Not B
A set of rules can be used to infer any valid conclusion if it is complete, while never inferring an invalid conclusion, if it is sound. A sound and complete set of rules need not include every rule in the following list, as many of the rules are redundant, and can be proven with the other rules.
But it can be rewritten as a standard form AAA-1 syllogism by first substituting the synonymous term "humans" for "people" and then by reducing the complementary term "immortal" in the first premise using the immediate inference known as obversion (that is, the statement "No humans are immortal." is equivalent to the statement "All humans are ...
Destructive dilemma [1] [2] is the name of a valid rule of inference of propositional logic.It is the inference that, if P implies Q and R implies S and either Q is false or S is false, then either P or R must be false.