When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Gaussian quadrature - Wikipedia

    en.wikipedia.org/wiki/Gaussian_quadrature

    This exact rule is known as the Gauss–Legendre quadrature rule. The quadrature rule will only be an accurate approximation to the integral above if f (x) is well-approximated by a polynomial of degree 2n − 1 or less on [−1, 1]. The Gauss–Legendre quadrature rule is not typically used for integrable functions with endpoint singularities ...

  3. Newton–Cotes formulas - Wikipedia

    en.wikipedia.org/wiki/Newton–Cotes_formulas

    It is assumed that the value of a function f defined on [,] is known at + equally spaced points: < < <.There are two classes of Newton–Cotes quadrature: they are called "closed" when = and =, i.e. they use the function values at the interval endpoints, and "open" when > and <, i.e. they do not use the function values at the endpoints.

  4. Gauss–Legendre quadrature - Wikipedia

    en.wikipedia.org/wiki/Gauss–Legendre_quadrature

    Carl Friedrich Gauss was the first to derive the Gauss–Legendre quadrature rule, doing so by a calculation with continued fractions in 1814. [4] He calculated the nodes and weights to 16 digits up to order n=7 by hand. Carl Gustav Jacob Jacobi discovered the connection between the quadrature rule and the orthogonal family of Legendre polynomials.

  5. Gauss–Kronrod quadrature formula - Wikipedia

    en.wikipedia.org/wiki/Gauss–Kronrod_quadrature...

    Gauss–Kronrod formulas are extensions of the Gauss quadrature formulas generated by adding + points to an -point rule in such a way that the resulting rule is exact for polynomials of degree less than or equal to + (Laurie (1997, p. 1133); the corresponding Gauss rule is of order ).

  6. Nyström method - Wikipedia

    en.wikipedia.org/wiki/Nyström_method

    In mathematics numerical analysis, the Nyström method [1] or quadrature method seeks the numerical solution of an integral equation by replacing the integral with a representative weighted sum. The continuous problem is broken into n {\displaystyle n} discrete intervals; quadrature or numerical integration determines the weights and locations ...

  7. Chebyshev–Gauss quadrature - Wikipedia

    en.wikipedia.org/wiki/Chebyshev–Gauss_quadrature

    In numerical analysis Chebyshev–Gauss quadrature is an extension of Gaussian quadrature method for approximating the value of integrals of the following kind:

  8. Gauss–Hermite quadrature - Wikipedia

    en.wikipedia.org/wiki/Gauss–Hermite_quadrature

    1 Example with change of variable. 2 References. ... Gauss–Hermite quadrature is a form of Gaussian quadrature for approximating the value of integrals of the ...

  9. Bayesian quadrature - Wikipedia

    en.wikipedia.org/wiki/Bayesian_quadrature

    One approach consists of using point sets from other quadrature rules. For example, taking independent and identically distributed realisations from recovers a Bayesian approach to Monte Carlo, [3] whereas using certain deterministic point sets such as low-discrepancy sequences or lattices recovers a Bayesian alternative to quasi-Monte Carlo.