When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Goldbach's conjecture - Wikipedia

    en.wikipedia.org/wiki/Goldbach's_conjecture

    In particular, the set of even integers that are not the sum of two primes has density zero. In 1951, Yuri Linnik proved the existence of a constant K such that every sufficiently large even number is the sum of two primes and at most K powers of 2. János Pintz and Imre Ruzsa found in 2020 that K = 8 works. [21]

  3. Division by infinity - Wikipedia

    en.wikipedia.org/wiki/Division_by_infinity

    The hyperbola = /.As approaches ∞, approaches 0.. In mathematics, division by infinity is division where the divisor (denominator) is ∞.In ordinary arithmetic, this does not have a well-defined meaning, since ∞ is a mathematical concept that does not correspond to a specific number, and moreover, there is no nonzero real number that, when added to itself an infinite number of times ...

  4. Riemann series theorem - Wikipedia

    en.wikipedia.org/wiki/Riemann_series_theorem

    The next term is −1/8. The next two terms are 1/5 and −1/10, whose sum is 1/10. In general, since every odd integer occurs once positively and every even integers occur once negatively (half of them as multiples of 4, the other half as twice odd integers), the sum is composed of blocks of three which can be simplified as:

  5. Composite number - Wikipedia

    en.wikipedia.org/wiki/Composite_number

    [1] [2] Every positive integer is composite, prime, or the unit 1, so the composite numbers are exactly the numbers that are not prime and not a unit. [3] [4] E.g., the integer 14 is a composite number because it is the product of the two smaller integers 2 × 7 but the integers 2 and 3 are not because each can only be divided by one and itself.

  6. List of sums of reciprocals - Wikipedia

    en.wikipedia.org/wiki/List_of_sums_of_reciprocals

    The reciprocals of the non-negative integer powers of 2 sum to 2 . This is a particular case of the sum of the reciprocals of any geometric series where the first term and the common ratio are positive integers. If the first term is a and the common ratio is r then the sum is ⁠ r / a (r − 1) ⁠.

  7. Fermat's theorem on sums of two squares - Wikipedia

    en.wikipedia.org/wiki/Fermat's_theorem_on_sums_of...

    For the avoidance of ambiguity, zero will always be a valid possible constituent of "sums of two squares", so for example every square of an integer is trivially expressible as the sum of two squares by setting one of them to be zero. 1. The product of two numbers, each of which is a sum of two squares, is itself a sum of two squares.

  8. Waring's problem - Wikipedia

    en.wikipedia.org/wiki/Waring's_problem

    G(3) is at least 4 (since cubes are congruent to 0, 1 or −1 mod 9); for numbers less than 1.3 × 10 9, 1 290 740 is the last to require 6 cubes, and the number of numbers between N and 2N requiring 5 cubes drops off with increasing N at sufficient speed to have people believe that G(3) = 4; [22] the largest number now known not to be a sum of ...

  9. Sum of two squares theorem - Wikipedia

    en.wikipedia.org/wiki/Sum_of_two_squares_theorem

    The prime decomposition of the number 2450 is given by 2450 = 2 · 5 2 · 7 2. Of the primes occurring in this decomposition, 2, 5, and 7, only 7 is congruent to 3 modulo 4. Its exponent in the decomposition, 2, is even. Therefore, the theorem states that it is expressible as the sum of two squares. Indeed, 2450 = 7 2 + 49 2.