When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Earth's orbit - Wikipedia

    en.wikipedia.org/wiki/Earth's_orbit

    The point towards which the Earth in its solar orbit is directed at any given instant is known as the "apex of the Earth's way". [4] [5] From a vantage point above the north pole of either the Sun or Earth, Earth would appear to revolve in a counterclockwise direction around the Sun. From the same vantage point, both the Earth and the Sun would ...

  3. Orbital speed - Wikipedia

    en.wikipedia.org/wiki/Orbital_speed

    In gravitationally bound systems, the orbital speed of an astronomical body or object (e.g. planet, moon, artificial satellite, spacecraft, or star) is the speed at which it orbits around either the barycenter (the combined center of mass) or, if one body is much more massive than the other bodies of the system combined, its speed relative to the center of mass of the most massive body.

  4. Outer space - Wikipedia

    en.wikipedia.org/wiki/Outer_space

    The energy required to reach Earth orbital velocity at an altitude of 600 km (370 mi) is about 36 MJ/kg, which is six times the energy needed merely to climb to the corresponding altitude. [93] The escape velocity required to pull free of Earth's gravitational field altogether and move into interplanetary space is about 11.2 km/s (25,100 mph).

  5. Earth - Wikipedia

    en.wikipedia.org/wiki/Earth

    Earth orbits the Sun, making Earth the third-closest planet to the Sun and part of the inner Solar System. Earth's average orbital distance is about 150 million km (93 million mi), which is the basis for the astronomical unit (AU) and is equal to roughly 8.3 light minutes or 380 times Earth's distance to the Moon.

  6. Sphere of influence (astrodynamics) - Wikipedia

    en.wikipedia.org/wiki/Sphere_of_influence_(astro...

    In the patched conic approximation, once an object leaves the planet's SOI, the primary/only gravitational influence is the Sun (until the object enters another body's SOI). Because the definition of r SOI relies on the presence of the Sun and a planet, the term is only applicable in a three-body or greater system and requires the mass of the ...

  7. Circular orbit - Wikipedia

    en.wikipedia.org/wiki/Circular_orbit

    The speed (or the magnitude of velocity) relative to the centre of mass is constant: [1]: 30 = = where: , is the gravitational constant, is the mass of both orbiting bodies (+), although in common practice, if the greater mass is significantly larger, the lesser mass is often neglected, with minimal change in the result.

  8. Orbital mechanics - Wikipedia

    en.wikipedia.org/wiki/Orbital_mechanics

    To escape the Solar System from a location at a distance from the Sun equal to the distance Sun–Earth, but not close to the Earth, requires around 42 km/s velocity, but there will be "partial credit" for the Earth's orbital velocity for spacecraft launched from Earth, if their further acceleration (due to the propulsion system) carries them ...

  9. Hill sphere - Wikipedia

    en.wikipedia.org/wiki/Hill_sphere

    The actual Hill radius for the Earth-Moon pair is on the order of 60,000 km (i.e., extending less than one-sixth the distance of the 378,000 km between the Moon and the Earth). [9] In the Earth-Sun example, the Earth (5.97 × 10 24 kg) orbits the Sun (1.99 × 10 30 kg) at a distance of 149.6 million km, or one astronomical unit (AU). The Hill ...