When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Ramanujan summation - Wikipedia

    en.wikipedia.org/wiki/Ramanujan_summation

    Ramanujan summation is a technique invented by the mathematician Srinivasa Ramanujan for assigning a value to divergent infinite series.Although the Ramanujan summation of a divergent series is not a sum in the traditional sense, it has properties that make it mathematically useful in the study of divergent infinite series, for which conventional summation is undefined.

  3. Ramanujan's sum - Wikipedia

    en.wikipedia.org/wiki/Ramanujan's_sum

    where the a k ∈ C, is called a Ramanujan expansion [12] of f (n). Ramanujan found expansions of some of the well-known functions of number theory. All of these results are proved in an "elementary" manner (i.e. only using formal manipulations of series and the simplest results about convergence).

  4. 1 + 2 + 3 + 4 + ⋯ - ⋯ - Wikipedia

    en.wikipedia.org/wiki/1_%2B_2_%2B_3_%2B_4_%2B_%E...

    The y-intercept of the parabola is ⁠− + 1 / 12 ⁠. [1] The method of regularization using a cutoff function can "smooth" the series to arrive at ⁠− + 1 / 12 ⁠. Smoothing is a conceptual bridge between zeta function regularization, with its reliance on complex analysis, and Ramanujan summation, with its shortcut to the Euler ...

  5. Divergent series - Wikipedia

    en.wikipedia.org/wiki/Divergent_series

    Ramanujan summation is a method of assigning a value to divergent series used by Ramanujan and based on the Euler–Maclaurin summation formula. The Ramanujan sum of a series f(0) + f(1) + ... depends not only on the values of f at integers, but also on values of the function f at non-integral points, so it is not really a summation method in ...

  6. 1 + 2 + 4 + 8 + ⋯ - Wikipedia

    en.wikipedia.org/wiki/1_%2B_2_%2B_4_%2B_8_%2B_%E...

    The first four partial sums of 1 + 2 + 4 + 8 + ⋯. In mathematics, 1 + 2 + 4 + 8 + ⋯ is the infinite series whose terms are the successive powers of two. As a geometric series, it is characterized by its first term, 1, and its common ratio, 2. As a series of real numbers it diverges to infinity, so the sum of this series is infinity.

  7. Ramanujan–Sato series - Wikipedia

    en.wikipedia.org/wiki/Ramanujan–Sato_series

    The first belongs to a family of formulas which were rigorously proven by the Chudnovsky brothers in 1989 [11] and later used to calculate 10 trillion digits of π in 2011. [12] The second formula, and the ones for higher levels, was established by H.H. Chan and S. Cooper in 2012.

  8. Seeing the number 1212 everywhere? Here's what it might mean

    www.aol.com/seeing-number-1212-everywhere-heres...

    12 basic rules for long, lasting relationships. 75 Monday motivation quotes to start your week off strong. As you do this, continue to “invest in your own development and create well-defined ...

  9. 1729 (number) - Wikipedia

    en.wikipedia.org/wiki/1729_(number)

    It has as factors 1, 7, 13, 19, 91, 133, 247, and 1729. [2] It is the third Carmichael number, [3] and the first Chernick–Carmichael number. [a] Furthermore, it is the first in the family of absolute Euler pseudoprimes, a subset of Carmichael numbers. [7] 1729 is divisible by 19, the sum of its digits, making it a harshad number in base 10. [8]