When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Reflection (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Reflection_(mathematics)

    A reflection through an axis. In mathematics, a reflection (also spelled reflexion) [1] is a mapping from a Euclidean space to itself that is an isometry with a hyperplane as the set of fixed points; this set is called the axis (in dimension 2) or plane (in dimension 3) of reflection. The image of a figure by a reflection is its mirror image in ...

  3. Rotation formalisms in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotation_formalisms_in...

    Using the x-convention, the 3-1-3 extrinsic Euler angles φ, θ and ψ (around the z-axis, x-axis and again the -axis) can be obtained as follows: = ⁡ (,) = ⁡ = ⁡ (,) Note that atan2( a , b ) is equivalent to arctan ⁠ a / b ⁠ where it also takes into account the quadrant that the point ( b , a ) is in; see atan2 .

  4. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    If we condense the skew entries into a vector, (x,y,z), then we produce a 90° rotation around the x-axis for (1, 0, 0), around the y-axis for (0, 1, 0), and around the z-axis for (0, 0, 1). The 180° rotations are just out of reach; for, in the limit as x → ∞ , ( x , 0, 0) does approach a 180° rotation around the x axis, and similarly for ...

  5. Euclidean plane isometry - Wikipedia

    en.wikipedia.org/wiki/Euclidean_plane_isometry

    Call the images of p 2 and p 3 under this reflection p 2 ′ and p 3 ′. If q 2 is distinct from p 2 ′, bisect the angle at q 1 with a new mirror. With p 1 and p 2 now in place, p 3 is at p 3 ″; and if it is not in place, a final mirror through q 1 and q 2 will flip it to q 3. Thus at most three reflections suffice to reproduce any plane ...

  6. 3D rotation group - Wikipedia

    en.wikipedia.org/wiki/3D_rotation_group

    This is a rotation around the vector (x, y, z) by an angle 2θ, where cos θ = w and |sin θ| = ‖ (x, y, z) ‖. The proper sign for sin θ is implied, once the signs of the axis components are fixed. The 2:1-nature is apparent since both q and −q map to the same Q.

  7. Rotation (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Rotation_(mathematics)

    The axis of rotation is a line of its fixed points. They exist only in n = 3. The plane of rotation is a plane that is invariant under the rotation. Unlike the axis, its points are not fixed themselves. The axis (where present) and the plane of a rotation are orthogonal.

  8. Truncus (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Truncus_(mathematics)

    When a < 0 the graph is reflected in the x-axis as well as being stretched vertically. The constant b translates the graph horizontally left b units when b > 0, or right when b < 0. The constant c translates the graph vertically up c units when c > 0 or down when c < 0. The asymptotes of a truncus are found at x = -b (for the vertical asymptote ...

  9. Euler's rotation theorem - Wikipedia

    en.wikipedia.org/wiki/Euler's_rotation_theorem

    A spatial rotation is a linear map in one-to-one correspondence with a 3 × 3 rotation matrix R that transforms a coordinate vector x into X, that is Rx = X. Therefore, another version of Euler's theorem is that for every rotation R , there is a nonzero vector n for which Rn = n ; this is exactly the claim that n is an eigenvector of R ...