When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Radius of curvature (optics) - Wikipedia

    en.wikipedia.org/wiki/Radius_of_curvature_(optics)

    Radius of curvature sign convention for optical design. Radius of curvature (ROC) has specific meaning and sign convention in optical design. A spherical lens or mirror surface has a center of curvature located either along or decentered from the system local optical axis. The vertex of the lens surface is located on the local optical axis.

  3. Focal length - Wikipedia

    en.wikipedia.org/wiki/Focal_length

    For a spherically-curved mirror in air, the magnitude of the focal length is equal to the radius of curvature of the mirror divided by two. The focal length is positive for a concave mirror, and negative for a convex mirror. In the sign convention used in optical design, a concave mirror has negative radius of curvature, so

  4. Thin lens - Wikipedia

    en.wikipedia.org/wiki/Thin_lens

    The signs are reversed for the back surface of the lens: R 2 is positive if the surface is concave, and negative if it is convex. This is an arbitrary sign convention; some authors choose different signs for the radii, which changes the equation for the focal length. For a thin lens, d is much smaller than one of the radii of curvature (either ...

  5. Ray transfer matrix analysis - Wikipedia

    en.wikipedia.org/wiki/Ray_transfer_matrix_analysis

    R = radius of curvature, R > 0 for concave, valid in the paraxial approximation θ is the mirror angle of incidence in the horizontal plane. Thin lens f = focal length of lens where f > 0 for convex/positive (converging) lens.

  6. Vergence (optics) - Wikipedia

    en.wikipedia.org/wiki/Vergence_(optics)

    For concave lenses, the focal point is on the back side of the lens, or the output side of the focal plane, and is negative in power. A lens with no optical power is called an optical window, having flat, parallel faces. The optical power directly relates to how large positive images will be magnified, and how small negative images will be ...

  7. Radius of curvature - Wikipedia

    en.wikipedia.org/wiki/Radius_of_curvature

    Radius of curvature and center of curvature. In differential geometry, the radius of curvature, R, is the reciprocal of the curvature. For a curve, it equals the radius of the circular arc which best approximates the curve at that point. For surfaces, the radius of curvature is the radius of a circle that best fits a normal section or ...

  8. Optical cavity - Wikipedia

    en.wikipedia.org/wiki/Optical_cavity

    Types of two-mirror optical cavities, with mirrors of various curvatures, showing the radiation pattern inside each cavity. Light confined in a resonator will reflect multiple times from the mirrors, and due to the effects of interference, only certain patterns and frequencies of radiation will be sustained by the resonator, with the others being suppressed by destructive interference.

  9. Curved mirror - Wikipedia

    en.wikipedia.org/wiki/Curved_mirror

    Convex mirror lets motorists see around a corner. Detail of the convex mirror in the Arnolfini Portrait. The passenger-side mirror on a car is typically a convex mirror. In some countries, these are labeled with the safety warning "Objects in mirror are closer than they appear", to warn the driver of the convex mirror's distorting effects on distance perception.