Search results
Results From The WOW.Com Content Network
The frequency at which this equality holds for the particular circuit is called the resonant frequency. The resonant frequency of the LC circuit is =, where L is the inductance in henries, and C is the capacitance in farads. The angular frequency ω 0 has units of radians per second.
Mechanical resonance is the tendency of a mechanical system to respond at greater amplitude when the frequency of its oscillations matches the system's natural frequency of vibration (its resonance frequency or resonant frequency) closer than it does other frequencies. It may cause violent swaying motions and potentially catastrophic failure in ...
Increase of amplitude as damping decreases and frequency approaches resonant frequency of a driven damped simple harmonic oscillator. [1] [2]Resonance is a phenomenon that occurs when an object or system is subjected to an external force or vibration that matches its natural frequency.
The resonant frequency for a driven RLC circuit is the same as a circuit in which there is no damping, hence undamped resonant frequency. The resonant frequency peak amplitude, on the other hand, does depend on the value of the resistor and is described as the damped resonant frequency.
The Q factor is a parameter that describes the resonance behavior of an underdamped harmonic oscillator (resonator). Sinusoidally driven resonators having higher Q factors resonate with greater amplitudes (at the resonant frequency) but have a smaller range of frequencies around that frequency for which they resonate; the range of frequencies for which the oscillator resonates is called the ...
For a particular driving frequency called the resonance, or resonant frequency =, the amplitude (for a given ) is maximal. This resonance effect only occurs when < /, i.e. for significantly underdamped systems. For strongly underdamped systems the value of the amplitude can become quite large near the resonant frequency.
The Sauerbrey equation was developed for oscillation in air and only applies to rigid masses attached to the crystal. It has been shown that quartz crystal microbalance measurements can be performed in liquid, in which case a viscosity related decrease in the resonant frequency will be observed:
Resonators may be both electromagnetic and acoustic. Coupling coefficients together with resonant frequencies and external quality factors of resonators are the generalized parameters of filters. In order to adjust the frequency response of the filter it is sufficient to optimize only these generalized parameters.