When.com Web Search

  1. Ads

    related to: addition of fractions grade 3

Search results

  1. Results From The WOW.Com Content Network
  2. Addition - Wikipedia

    en.wikipedia.org/wiki/Addition

    Addition of fractions is much simpler when the denominators are the same; in this case, one can simply add the numerators while leaving the denominator the same: + = +, so + = + =. [ 63 ] The commutativity and associativity of rational addition is an easy consequence of the laws of integer arithmetic. [ 64 ]

  3. Fraction - Wikipedia

    en.wikipedia.org/wiki/Fraction

    For example, in the fraction3 / 4 ⁠, the numerator 3 indicates that the fraction represents 3 equal parts, and the denominator 4 indicates that 4 parts make up a whole. The picture to the right illustrates ⁠ 3 / 4 ⁠ of a cake. Fractions can be used to represent ratios and division. [1]

  4. Arithmetic - Wikipedia

    en.wikipedia.org/wiki/Arithmetic

    Decimal fractions like 0.3 and 25.12 are a special type of rational numbers since their denominator is a power of 10. For instance, 0.3 is equal to , and 25.12 is equal to . [20] Every rational number corresponds to a finite or a repeating decimal. [21] [c]

  5. Multiplication and repeated addition - Wikipedia

    en.wikipedia.org/wiki/Multiplication_and...

    In mathematics education, there was a debate on the issue of whether the operation of multiplication should be taught as being a form of repeated addition.Participants in the debate brought up multiple perspectives, including axioms of arithmetic, pedagogy, learning and instructional design, history of mathematics, philosophy of mathematics, and computer-based mathematics.

  6. Elementary mathematics - Wikipedia

    en.wikipedia.org/wiki/Elementary_mathematics

    Rational number is any number that can be expressed as the quotient or fraction p/q of two integers, with the denominator q not equal to zero. [9] Since q may be equal to 1, every integer is a rational number. The set of all rational numbers is usually denoted by a boldface Q (or blackboard bold).

  7. Field (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Field_(mathematics)

    Informally, a field is a set, along with two operations defined on that set: an addition operation written as a + b, and a multiplication operation written as a ⋅ b, both of which behave similarly as they behave for rational numbers and real numbers, including the existence of an additive inverse −a for all elements a, and of a multiplicative inverse b −1 for every nonzero element b.