When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Linear interpolation - Wikipedia

    en.wikipedia.org/wiki/Linear_interpolation

    Given the two red points, the blue line is the linear interpolant between the points, and the value y at x may be found by linear interpolation.. In mathematics, linear interpolation is a method of curve fitting using linear polynomials to construct new data points within the range of a discrete set of known data points.

  3. Neville's algorithm - Wikipedia

    en.wikipedia.org/wiki/Neville's_algorithm

    This process yields p 0,4 (x), the value of the polynomial going through the n + 1 data points (x i, y i) at the point x. This algorithm needs O(n 2) floating point operations to interpolate a single point, and O(n 3) floating point operations to interpolate a polynomial of degree n.

  4. Spline interpolation - Wikipedia

    en.wikipedia.org/wiki/Spline_interpolation

    The relations are n − 1 linear equations for the n + 1 values k 0, k 1, ..., k n. For the elastic rulers being the model for the spline interpolation, one has that to the left of the left-most "knot" and to the right of the right-most "knot" the ruler can move freely and will therefore take the form of a straight line with q′′ = 0.

  5. Multivariate interpolation - Wikipedia

    en.wikipedia.org/wiki/Multivariate_interpolation

    ) and the interpolation problem consists of yielding values at arbitrary points (,,, … ) {\displaystyle (x,y,z,\dots )} . Multivariate interpolation is particularly important in geostatistics , where it is used to create a digital elevation model from a set of points on the Earth's surface (for example, spot heights in a topographic survey or ...

  6. Trilinear interpolation - Wikipedia

    en.wikipedia.org/wiki/Trilinear_interpolation

    Trilinear interpolation is the extension of linear interpolation, which operates in spaces with dimension =, and bilinear interpolation, which operates with dimension =, to dimension =. These interpolation schemes all use polynomials of order 1, giving an accuracy of order 2, and it requires 2 D = 8 {\displaystyle 2^{D}=8} adjacent pre-defined ...

  7. Polyharmonic spline - Wikipedia

    en.wikipedia.org/wiki/Polyharmonic_spline

    The next figure shows the interpolation through four points (marked by "circles") using different types of polyharmonic splines. The "curvature" of the interpolated curves grows with the order of the spline and the extrapolation at the left boundary ( x < 0) is reasonable.

  8. Inverse quadratic interpolation - Wikipedia

    en.wikipedia.org/.../Inverse_quadratic_interpolation

    In numerical analysis, inverse quadratic interpolation is a root-finding algorithm, meaning that it is an algorithm for solving equations of the form f(x) = 0. The idea is to use quadratic interpolation to approximate the inverse of f. This algorithm is rarely used on its own, but it is important because it forms part of the popular Brent's method.

  9. Smoothstep - Wikipedia

    en.wikipedia.org/wiki/Smoothstep

    Smoothstep is a family of sigmoid-like interpolation and clamping functions commonly used in computer graphics, [1] [2] video game engines, [3] and machine learning. [ 4 ] The function depends on three parameters, the input x , the "left edge" and the "right edge", with the left edge being assumed smaller than the right edge.