Search results
Results From The WOW.Com Content Network
The zero-order hold (ZOH) is a mathematical model of the practical signal reconstruction done by a conventional digital-to-analog converter (DAC). [1] That is, it describes the effect of converting a discrete-time signal to a continuous-time signal by holding each sample value for one sample interval. It has several applications in electrical ...
Nearest-neighbor interpolation (also known as proximal interpolation or, in some contexts, point sampling) is a simple method of multivariate interpolation in one or more dimensions. Interpolation is the problem of approximating the value of a function for a non-given point in some space when given the value of that function in points around ...
The sampled spectrum, Ss(ω) of this waveform, calculated using the equation given above, is shown. To simplify the plot, only the results at positive frequencies have been displayed. The influence of the frequency spectrum of the zero order hold circuit is clearly seen in the diagram.
A solution to a discretized partial differential equation, obtained with the finite element method. In applied mathematics, discretization is the process of transferring continuous functions, models, variables, and equations into discrete counterparts. This process is usually carried out as a first step toward making them suitable for numerical ...
The Zero-order hold (ZOH) is a mathematical model of the practical reconstruction of sampled signals done by conventional digital-to-analog converters (DAC). When a signal, x(t), is sampled at intervals of length T, we are left with just the discrete sequence : x(nT), for integer values of n.
A mathematical model such as FOH (or, more commonly, the zero-order hold) is necessary because, in the sampling and reconstruction theorem, a sequence of Dirac impulses, x s (t), representing the discrete samples, x(nT), is low-pass filtered to recover the original signal that was sampled, x(t). However, outputting a sequence of Dirac impulses ...
There are several useful properties of natural neighbor interpolation: [4] The method is an exact interpolator, in that the original data values are retained at the reference data points. The method creates a smooth surface free from any discontinuities.
A plot of the smoothstep(x) and smootherstep(x) functions, using 0 as the left edge and 1 as the right edgeSmoothstep is a family of sigmoid-like interpolation and clamping functions commonly used in computer graphics, [1] [2] video game engines, [3] and machine learning.