When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Goldman–Hodgkin–Katz flux equation - Wikipedia

    en.wikipedia.org/wiki/Goldman–Hodgkin–Katz...

    Since one of the assumptions of the GHK flux equation is that the ions move independently of each other, the total flow of ions across the membrane is simply equal to the sum of two oppositely directed fluxes. Each flux approaches an asymptotic value as the membrane potential diverges from zero. These asymptotes are

  3. Voltage-gated sodium channel - Wikipedia

    en.wikipedia.org/wiki/Voltage-gated_sodium_channel

    Voltage-gated sodium channels (VGSCs), also known as voltage-dependent sodium channels (VDSCs), are a group of voltage-gated ion channels found in the membrane of excitable cells (e.g., muscle, glial cells, neurons, etc.) with a permeability to the sodium ion Na +. They are the main channels involved in action potential of excitable cells.

  4. Goldman equation - Wikipedia

    en.wikipedia.org/wiki/Goldman_equation

    The ionic charge determines the sign of the membrane potential contribution. During an action potential, although the membrane potential changes about 100mV, the concentrations of ions inside and outside the cell do not change significantly. They are always very close to their respective concentrations when the membrane is at their resting ...

  5. Poisson–Boltzmann equation - Wikipedia

    en.wikipedia.org/wiki/Poisson–Boltzmann_equation

    The high-potential case becomes more complex so if applicable, use the low-potential equation. In the low-potential condition, the linearized version of the Poisson–Boltzmann equation (shown below) is valid, and it is commonly used as it is more simple and spans a wide variety of cases.

  6. Sodium channel - Wikipedia

    en.wikipedia.org/wiki/Sodium_channel

    With the activation gate closed and the inactivation gate open, the Na + channel is once again in its deactivated state, and is ready to participate in another action potential. When any kind of ion channel does not inactivate itself, it is said to be persistently (or tonically) active. Some kinds of ion channels are naturally persistently active.

  7. Membrane potential - Wikipedia

    en.wikipedia.org/wiki/Membrane_potential

    For example, the ion channels involved in the action potential are voltage-sensitive channels; they open and close in response to the voltage across the membrane. Ligand-gated channels form another important class; these ion channels open and close in response to the binding of a ligand molecule, such as a neurotransmitter. Other ion channels ...

  8. Action potential - Wikipedia

    en.wikipedia.org/wiki/Action_potential

    Voltage-gated ion channels are capable of producing action potentials because they can give rise to positive feedback loops: The membrane potential controls the state of the ion channels, but the state of the ion channels controls the membrane potential. Thus, in some situations, a rise in the membrane potential can cause ion channels to open ...

  9. Ion channel - Wikipedia

    en.wikipedia.org/wiki/Ion_channel

    Ions pass through channels down their electrochemical gradient, which is a function of ion concentration and membrane potential, "downhill", without the input (or help) of metabolic energy (e.g. ATP, co-transport mechanisms, or active transport mechanisms).