Ad
related to: google map two point distance
Search results
Results From The WOW.Com Content Network
The two-point equidistant projection or doubly equidistant projection is a map projection first described by Hans Maurer in 1919 and Charles Close in 1921. [1] [2] It is a generalization of the much simpler azimuthal equidistant projection. In this two-point form, two locus points are chosen by the mapmaker to configure the projection ...
The straight-line distance between the central point on the map to any other point is the same as the straight-line 3D distance through the globe between the two points. c. 150 BC: Stereographic: Azimuthal Conformal Hipparchos* Map is infinite in extent with outer hemisphere inflating severely, so it is often used as two hemispheres.
Distance from the tangent point on the map is proportional to straight-line distance through the Earth: r(d) = c sin d / 2R [38] Logarithmic azimuthal is constructed so that each point's distance from the center of the map is the logarithm of its distance from the tangent point on the Earth.
If the azimuthal equidistant projection map is centered about a point whose antipodal point lies on land and the map is extended to the maximum distance of 20,000 km (12,427 mi) the antipode point smears into a large circle. This is shown in the example of two maps centered about Los Angeles, and Taipei.
The shortest path between two intersections on a city map can be found by this algorithm using pencil and paper. Every intersection is listed on a separate line: one is the starting point and is labeled (given a distance of) 0. Every other intersection is initially labeled with a distance of infinity.
Shortest path (A, C, E, D, F) between vertices A and F in the weighted directed graph. In graph theory, the shortest path problem is the problem of finding a path between two vertices (or nodes) in a graph such that the sum of the weights of its constituent edges is minimized.
Vincenty's formulae are two related iterative methods used in geodesy to calculate the distance between two points on the surface of a spheroid, developed by Thaddeus Vincenty (1975a). They are based on the assumption that the figure of the Earth is an oblate spheroid, and hence are more accurate than methods that assume a spherical Earth, such ...
A diagram illustrating great-circle distance (drawn in red) between two points on a sphere, P and Q. Two antipodal points, u and v are also shown. The great-circle distance, orthodromic distance, or spherical distance is the distance between two points on a sphere, measured along the great-circle arc between them. This arc is the shortest path ...