Search results
Results From The WOW.Com Content Network
A mitochondrion (pl. mitochondria) is an organelle found in the cells of most eukaryotes, such as animals, plants and fungi.Mitochondria have a double membrane structure and use aerobic respiration to generate adenosine triphosphate (ATP), which is used throughout the cell as a source of chemical energy. [2]
This ratio is variable and mitochondria from cells that have a greater demand for ATP, such as muscle cells, contain even more cristae. Cristae membranes are studded on the matrix side with small round protein complexes known as F 1 particles, the site of proton-gradient driven ATP synthesis. Cristae affect overall chemiosmotic function of ...
Mitochondrial matrix has a pH of about 7.8, which is higher than the pH of the intermembrane space of the mitochondria, which is around 7.0–7.4. [5] Mitochondrial DNA was discovered by Nash and Margit in 1963. One to many double stranded mainly circular DNA is present in mitochondrial matrix. Mitochondrial DNA is 1% of total DNA of a cell.
The content of the cell, inside the cell membrane, is composed of numerous membrane-bound organelles, which contribute to the overall function of the cell. The origin, structure, and function of each organelle leads to a large variation in the cell composition due to the individual uniqueness associated with each organelle.
The mitochondria-associated ER membranes (MAMs), play role in cell death modulation. Mitochondrial outer membrane permeabilization (MOMP), is a reason of the higher matrix Ca 2+ levels, which is acts as a trigger for apoptosis. MOMP is the process before apoptosis, which is accompanied to permeability of the inner membrane of the mitochondria ...
Simplified structure of a mitochondrion. The intermembrane space (IMS) is the space occurring between or involving two or more membranes. [1] In cell biology, it is most commonly described as the region between the inner membrane and the outer membrane of a mitochondrion or a chloroplast.
The dynamic nature of mitochondria is critical for function. Chen and Chan (2010) have discussed the molecular basis of mitochondrial fusion, its protective role in neurodegeneration, and its importance in cellular function. [8] The mammalian mitofusins Mfn1 and Mfn2, GTPases localized to the outer membrane, mediate outer-membrane fusion.
Most mutations of mitochondrial membrane transporters are autosomal recessive. Mutations to transporters within the inner mitochondrial membrane mostly affect high-energy tissues due to the disruption of oxidative phosphorylation. [4] [44] For example, decreased mitochondrial function has been linked to heart failure and hypertrophy. This ...