When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Transversal (geometry) - Wikipedia

    en.wikipedia.org/wiki/Transversal_(geometry)

    Second, if a transversal intersects two lines so that interior angles on the same side of the transversal are supplementary, then the lines are parallel. These follow from the previous proposition by applying the fact that opposite angles of intersecting lines are equal (Prop. 15) and that adjacent angles on a line are supplementary (Prop. 13).

  3. Arrangement of lines - Wikipedia

    en.wikipedia.org/wiki/Arrangement_of_lines

    However, parallel (non-crossing) pairs of lines are less restricted in hyperbolic line arrangements than in the Euclidean plane: in particular, the relation of being parallel is an equivalence relation for Euclidean lines but not for hyperbolic lines. [51] The intersection graph of the lines in a hyperbolic arrangement can be an arbitrary ...

  4. Intersecting chords theorem - Wikipedia

    en.wikipedia.org/wiki/Intersecting_chords_theorem

    Next to the tangent-secant theorem and the intersecting secants theorem the intersecting chords theorem represents one of the three basic cases of a more general theorem about two intersecting lines and a circle - the power of point theorem.

  5. RAC drawing - Wikipedia

    en.wikipedia.org/wiki/RAC_drawing

    RAC drawings of the complete graph K 5 and the complete bipartite graph K 3,4. In graph drawing, a RAC drawing of a graph is a drawing in which the vertices are represented as points, the edges are represented as straight line segments or polylines, at most two edges cross at any point, and when two edges cross they do so at right angles to each other.

  6. Parallel (geometry) - Wikipedia

    en.wikipedia.org/wiki/Parallel_(geometry)

    The corresponding angles formed by a transversal property, used by W. D. Cooley in his 1860 text, The Elements of Geometry, simplified and explained requires a proof of the fact that if one transversal meets a pair of lines in congruent corresponding angles then all transversals must do so. Again, a new axiom is needed to justify this statement.

  7. Inversive geometry - Wikipedia

    en.wikipedia.org/wiki/Inversive_geometry

    In geometry, inversive geometry is the study of inversion, a transformation of the Euclidean plane that maps circles or lines to other circles or lines and that preserves the angles between crossing curves. Many difficult problems in geometry become much more tractable when an inversion is applied.

  8. Parallel postulate - Wikipedia

    en.wikipedia.org/wiki/Parallel_postulate

    If three angles of a quadrilateral are right angles, then the fourth angle is also a right angle. There exists a quadrilateral in which all angles are right angles, that is, a rectangle. There exists a pair of straight lines that are at constant distance from each other. Two lines that are parallel to the same line are also parallel to each other.

  9. Line–line intersection - Wikipedia

    en.wikipedia.org/wiki/Line–line_intersection

    Assume that we want to find intersection of two infinite lines in 2-dimensional space, defined as a 1 x + b 1 y + c 1 = 0 and a 2 x + b 2 y + c 2 = 0. We can represent these two lines in line coordinates as U 1 = (a 1, b 1, c 1) and U 2 = (a 2, b 2, c 2). The intersection P′ of two lines is then simply given by [4]