When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Marginal distribution - Wikipedia

    en.wikipedia.org/wiki/Marginal_distribution

    Marginal probability density function [ edit ] Given two continuous random variables X and Y whose joint distribution is known, then the marginal probability density function can be obtained by integrating the joint probability distribution, f , over Y, and vice versa.

  3. Probability density function - Wikipedia

    en.wikipedia.org/wiki/Probability_density_function

    In probability theory, a probability density function (PDF), density function, or density of an absolutely continuous random variable, is a function whose value at any given sample (or point) in the sample space (the set of possible values taken by the random variable) can be interpreted as providing a relative likelihood that the value of the ...

  4. Joint probability distribution - Wikipedia

    en.wikipedia.org/wiki/Joint_probability_distribution

    One must use the "mixed" joint density when finding the cumulative distribution of this binary outcome because the input variables (,) were initially defined in such a way that one could not collectively assign it either a probability density function or a probability mass function.

  5. Copula (statistics) - Wikipedia

    en.wikipedia.org/wiki/Copula_(statistics)

    when the two marginal functions and the copula density function are known, then the joint probability density function between the two random variables can be calculated, or; when the two marginal functions and the joint probability density function between the two random variables are known, then the copula density function can be calculated.

  6. Law of total probability - Wikipedia

    en.wikipedia.org/wiki/Law_of_total_probability

    In probability theory, the law (or formula) of total probability is a fundamental rule relating marginal probabilities to conditional probabilities. It expresses the total probability of an outcome which can be realized via several distinct events , hence the name.

  7. Characteristic function (probability theory) - Wikipedia

    en.wikipedia.org/wiki/Characteristic_function...

    The formula in the definition of characteristic function allows us to compute φ when we know the distribution function F (or density f). If, on the other hand, we know the characteristic function φ and want to find the corresponding distribution function, then one of the following inversion theorems can be used.

  8. Mutual information - Wikipedia

    en.wikipedia.org/wiki/Mutual_information

    where is the Kullback–Leibler divergence, and is the outer product distribution which assigns probability () to each (,).. Notice, as per property of the Kullback–Leibler divergence, that (;) is equal to zero precisely when the joint distribution coincides with the product of the marginals, i.e. when and are independent (and hence observing tells you nothing about ).

  9. Symmetric probability distribution - Wikipedia

    en.wikipedia.org/wiki/Symmetric_probability...

    The distribution can be discrete or continuous, and the existence of a density is not required, but the inertia must be finite and non null. In the univariate case, this index was proposed as a non parametric test of symmetry. [2] For continuous symmetric spherical, Mir M. Ali gave the following definition.