When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Greatest_common_divisor

    The greatest common divisor (GCD) of integers a and b, at least one of which is nonzero, is the greatest positive integer d such that d is a divisor of both a and b; that is, there are integers e and f such that a = de and b = df, and d is the largest such integer.

  3. Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Euclidean_algorithm

    The greatest common divisor g of a and b is the unique (positive) common divisor of a and b that is divisible by any other common divisor c. [6] The greatest common divisor can be visualized as follows. [7] Consider a rectangular area a by b, and any common divisor c that divides both a and b exactly.

  4. Polynomial greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Polynomial_greatest_common...

    Therefore, equalities like d = gcd(p, q) or gcd(p, q) = gcd(r, s) are common abuses of notation which should be read "d is a GCD of p and q" and "p and q have the same set of GCDs as r and s". In particular, gcd( p , q ) = 1 means that the invertible constants are the only common divisors.

  5. GCD domain - Wikipedia

    en.wikipedia.org/wiki/GCD_domain

    In other words, every GCD domain is a Schreier domain. For every pair of elements x, y of a GCD domain R, a GCD d of x and y and an LCM m of x and y can be chosen such that dm = xy, or stated differently, if x and y are nonzero elements and d is any GCD d of x and y, then xy/d is an LCM of x and y, and vice versa.

  6. Binary GCD algorithm - Wikipedia

    en.wikipedia.org/wiki/Binary_GCD_algorithm

    Visualisation of using the binary GCD algorithm to find the greatest common divisor (GCD) of 36 and 24. Thus, the GCD is 2 2 × 3 = 12.. The binary GCD algorithm, also known as Stein's algorithm or the binary Euclidean algorithm, [1] [2] is an algorithm that computes the greatest common divisor (GCD) of two nonnegative integers.

  7. Lamé's theorem - Wikipedia

    en.wikipedia.org/wiki/Lamé's_theorem

    Lamé's Theorem is the result of Gabriel Lamé's analysis of the complexity of the Euclidean algorithm.Using Fibonacci numbers, he proved in 1844 [1] [2] that when looking for the greatest common divisor (GCD) of two integers a and b, the algorithm finishes in at most 5k steps, where k is the number of digits (decimal) of b.

  8. Euclidean division - Wikipedia

    en.wikipedia.org/wiki/Euclidean_division

    Euclidean division, and algorithms to compute it, are fundamental for many questions concerning integers, such as the Euclidean algorithm for finding the greatest common divisor of two integers, [1] and modular arithmetic, for which only remainders are considered. [2]

  9. Coprime integers - Wikipedia

    en.wikipedia.org/wiki/Coprime_integers

    This is equivalent to their greatest common divisor (GCD) being 1. [2] One says also a is prime to b or a is coprime with b. The numbers 8 and 9 are coprime, despite the fact that neither—considered individually—is a prime number, since 1 is their only common divisor. On the other hand, 6 and 9 are not coprime, because they are both ...