Search results
Results From The WOW.Com Content Network
The mitochondrion is ... The enzyme uses the energy stored in a proton gradient across a membrane ... these conditions are commonly met in medical ...
The protons return to the mitochondrial matrix through the protein ATP synthase. The energy is used in order to rotate ATP synthase which facilitates the passage of a proton, producing ATP. A pH difference between the matrix and intermembrane space creates an electrochemical gradient by which ATP synthase can pass a proton into the matrix ...
In mitochondria, energy released by the electron transport chain is used to move protons from the mitochondrial matrix (N side) to the intermembrane space (P side). Moving the protons out of the mitochondrion creates a lower concentration of positively charged protons inside it, resulting in excess negative charge on the inside of the membrane.
The complex contains coordinated copper ions and several heme groups. At the same time, eight protons are removed from the mitochondrial matrix (although only four are translocated across the membrane), contributing to the proton gradient. The exact details of proton pumping in Complex IV are still under study. [9] Cyanide is an inhibitor of ...
The proton gradient can be generated through either noncyclic or cyclic photophosphorylation. Of the proteins that participate in noncyclic photophosphorylation, photosystem II (PSII), plastiquinone, and cytochrome b 6 f complex directly contribute to generating the proton gradient. For each four photons absorbed by PSII, eight protons are ...
Taking this into account, it takes 8/3 +1 or 3.67 protons for vertebrate mitochondria to synthesize one ATP in the cytoplasm from ADP and Pi in the cytoplasm. Within aerobic respiration , the P/O ratio continues to be debated; however, current figures place it at 2.5 ATP per 1/2(O 2 ) reduced to water, though some claim the ratio is 3. [ 5 ]
Complex III and IV are proton pumps, pumping H+ protons out of the mitochondrial matrix, and work in conjunction with complex I to create the proton gradient found at the inner membrane. Cytochrome c is and electron carrier protein that travels between complex III and IV, and triggers apoptosis if it leaves the cristae. Complex IV passes ...
The protons are pumped from the mitochondrial matrix to the IMS by these respiratory complexes. As a result, an electrochemical gradient is generated, which is combined by forces due to a H + gradient (pH gradient) and a voltage gradient (membrane potential). The pH in the IMS is about 0.7 unit lower than the one in the matrix and the membrane ...