Search results
Results From The WOW.Com Content Network
The depleted harmonic series where all of the terms in which the digit 9 appears anywhere in the denominator are removed can be shown to converge to the value 22.92067 66192 64150 34816.... [44] In fact, when all the terms containing any particular string of digits (in any base) are removed, the series converges. [45]
The geometric series is an infinite series derived from a special type of sequence called a geometric progression.This means that it is the sum of infinitely many terms of geometric progression: starting from the initial term , and the next one being the initial term multiplied by a constant number known as the common ratio .
The sum of the reciprocals of the numbers in any sum-free sequence is less than 2.8570 . The sum of the reciprocals of the heptagonal numbers converges to a known value that is not only irrational but also transcendental, and for which there exists a complicated formula.
An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.
Diagram illustrating three basic geometric sequences of the pattern 1(r n−1) up to 6 iterations deep.The first block is a unit block and the dashed line represents the infinite sum of the sequence, a number that it will forever approach but never touch: 2, 3/2, and 4/3 respectively.
Summation of a sequence of only one summand results in the summand itself. Summation of an empty sequence (a sequence with no elements), by convention, results in 0. Very often, the elements of a sequence are defined, through a regular pattern, as a function of their place in the sequence. For simple patterns, summation of long sequences may be ...
Let = be an infinite series with real terms and let : be any real function such that (/) = for all positive integers n and the second derivative ″ exists at =. Then ∑ n = 1 ∞ a n {\displaystyle \sum _{n=1}^{\infty }a_{n}} converges absolutely if f ( 0 ) = f ′ ( 0 ) = 0 {\displaystyle f(0)=f'(0)=0} and diverges otherwise.
The nth partial sum is given by a simple formula: = = (+). This equation was known to the Pythagoreans as early as the sixth century BCE. [5] Numbers of this form are called triangular numbers, because they can be arranged as an equilateral triangle.