Search results
Results From The WOW.Com Content Network
Radar cross-section (RCS), denoted σ, also called radar signature, is a measure of how detectable an object is by radar. A larger RCS indicates that an object is more easily detected. A larger RCS indicates that an object is more easily detected.
The shooting and bouncing rays (SBR) method in computational electromagnetics was first developed for computation of radar cross section (RCS). [1] Since then, the method has been generalized to be used also for installed antenna performance. The SBR method is an approximate method applied to high frequencies.
The radar frequency is also chosen in order to optimize the radar cross-section (RCS) of the envisioned target, which is frequency-dependent. Examples of propagation windows are the 3 GHz (S), 10 GHz (X), 24 GHz (K), 35 GHz (Ka), 77 GHz (W), 94 GHz (W) propagation windows.
Optical cross section (OCS) is a value which describes the maximum amount of optical flux reflected back to the source. [1] The standard unit of measurement is m 2 /sr. OCS is dependent on the geometry and the reflectivity at a particular wavelength of an object. Optical cross section is useful in fields such as LIDAR.
For example, assessing the value of the radar cross section of a plate with the analytical formula: =, where A is the surface of the plate and is the wavelength. The next curve presenting the RCS of a plate computed at 35 GHz can be used as reference example.
Fluctuation loss is an effect seen in radar systems as the target object moves or changes its orientation relative to the radar system. It was extensively studied during the 1950s by Peter Swerling, who introduced the Swerling models to allow the effect to be simulated.
The cross-section is the minimum apparent surface area observed in the direction of the radar that must be detectable.. Radar cross section changes with aspect angle. Cross section for anything except a perfect sphere depends upon the aspect angle, which how far the reflector is rotated with respect to the radar pulse.
The Zhuk has a weight of 250 kg and uses a 680 mm electronically scanned slotted planar array antenna which offers a detection range of 90 km against a target with a 5 m 2 radar cross-section (RCS). The radar can track 10–12 targets while engaging 2–4 of them with a scanning area of +/- 90 degrees in azimuth and +55/-40 degrees in elevation ...