When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Sum of two cubes - Wikipedia

    en.wikipedia.org/wiki/Sum_of_two_cubes

    A Cabtaxi number is the smallest positive number that can be expressed as a sum of two integer cubes in n ways, allowing the cubes to be negative or zero as well as positive. The smallest cabtaxi number after Cabtaxi(1) = 0, is Cabtaxi(2) = 91, [5] expressed as:

  3. Taxicab number - Wikipedia

    en.wikipedia.org/wiki/Taxicab_number

    In mathematics, the nth taxicab number, typically denoted Ta(n) or Taxicab(n), is defined as the smallest integer that can be expressed as a sum of two positive integer cubes in n distinct ways. [1] The most famous taxicab number is 1729 = Ta(2) = 1 3 + 12 3 = 9 3 + 10 3, also known as the Hardy-Ramanujan number. [2] [3]

  4. 1729 (number) - Wikipedia

    en.wikipedia.org/wiki/1729_(number)

    1729 can be expressed as a sum of two positive cubes in two ways, illustrated geometrically. 1729 is also known as Ramanujan number or Hardy–Ramanujan number, named after an anecdote of the British mathematician G. H. Hardy when he visited Indian mathematician Srinivasa Ramanujan who was ill in a hospital.

  5. 10 Hard Math Problems That Even the Smartest People in the ...

    www.aol.com/10-hard-math-problems-even-150000090...

    Goldbach’s Conjecture. One of the greatest unsolved mysteries in math is also very easy to write. Goldbach’s Conjecture is, “Every even number (greater than two) is the sum of two primes ...

  6. Sums of three cubes - Wikipedia

    en.wikipedia.org/wiki/Sums_of_three_cubes

    Sum of four cubes problem, whether every integer is a sum of four cubes; Euler's sum of powers conjecture § k = 3, relating to cubes that can be written as a sum of three positive cubes; Plato's number, an ancient text possibly discussing the equation 3 3 + 4 3 + 5 3 = 6 3; Taxicab number, the smallest integer that can be expressed as a sum of ...

  7. Cunningham Project - Wikipedia

    en.wikipedia.org/wiki/Cunningham_Project

    Two types of factors can be derived from a Cunningham number without having to use a factorization algorithm: algebraic factors of binomial numbers (e.g. difference of two squares and sum of two cubes), which depend on the exponent, and aurifeuillean factors, which depend on both the base and the exponent.

  8. Factorization - Wikipedia

    en.wikipedia.org/wiki/Factorization

    Typically, one may proceed by testing 2, 3, 5, and the numbers > 5, whose last digit is 1, 3, 7, 9 and the sum of digits is not a multiple of 3. This method works well for factoring small integers, but is inefficient for larger integers. For example, Pierre de Fermat was unable to discover that the 6th Fermat number

  9. Perfect number - Wikipedia

    en.wikipedia.org/wiki/Perfect_number

    The largest prime factor of N is greater than 10 8, [24] and less than . ... 28 is also the only even perfect number that is a sum of two positive cubes of integers ...