When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Base (topology) - Wikipedia

    en.wikipedia.org/wiki/Base_(topology)

    The set Γ of all open intervals in forms a basis for the Euclidean topology on .. A non-empty family of subsets of a set X that is closed under finite intersections of two or more sets, which is called a π-system on X, is necessarily a base for a topology on X if and only if it covers X.

  3. Subbase - Wikipedia

    en.wikipedia.org/wiki/Subbase

    Thus, we can start with a fixed topology and find subbases for that topology, and we can also start with an arbitrary subcollection of the power set ℘ and form the topology generated by that subcollection. We can freely use either equivalent definition above; indeed, in many cases, one of the two conditions is more useful than the other.

  4. Topological space - Wikipedia

    en.wikipedia.org/wiki/Topological_space

    In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance.More specifically, a topological space is a set whose elements are called points, along with an additional structure called a topology, which can be defined as a set of neighbourhoods for each point that satisfy some axioms ...

  5. Basis function - Wikipedia

    en.wikipedia.org/wiki/Basis_function

    In numerical analysis and approximation theory, basis functions are also called blending functions, because of their use in interpolation: In this application, a mixture of the basis functions provides an interpolating function (with the "blend" depending on the evaluation of the basis functions at the data points).

  6. Comparison of topologies - Wikipedia

    en.wikipedia.org/wiki/Comparison_of_topologies

    The finest topology on X is the discrete topology; this topology makes all subsets open. The coarsest topology on X is the trivial topology; this topology only admits the empty set and the whole space as open sets. In function spaces and spaces of measures there are often a number of possible topologies.

  7. General topology - Wikipedia

    en.wikipedia.org/wiki/General_topology

    The standard topology on R is generated by the open intervals. The set of all open intervals forms a base or basis for the topology, meaning that every open set is a union of some collection of sets from the base. In particular, this means that a set is open if there exists an open interval of non zero radius about every point in the set.

  8. Stone's representation theorem for Boolean algebras - Wikipedia

    en.wikipedia.org/wiki/Stone's_representation...

    The topology on S(B) is generated by a basis consisting of all sets of the form {()}, where b is an element of B. These sets are also closed and so are clopen (both closed and open). This is the topology of pointwise convergence of nets of homomorphisms into the two-element Boolean algebra.

  9. Schauder basis - Wikipedia

    en.wikipedia.org/wiki/Schauder_basis

    An uncountable Schauder basis is a linearly ordered set rather than a sequence, and each sum inherits the order of its terms from this linear ordering. They can and do arise in practice. As an example, a separable Hilbert space can only have a countable Schauder basis, but a non-separable Hilbert space may have an uncountable one.