When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Configuration linear program - Wikipedia

    en.wikipedia.org/wiki/Configuration_linear_program

    A linear program with no integrality constraints can be solved in time polynomial in the number of variables and constraints. The problem is that the number of variables in the fractional configuration LP is equal to the number of possible configurations, which might be huge. Karmarkar and Karp [9] present an algorithm that overcomes this problem.

  3. Linear programming - Wikipedia

    en.wikipedia.org/wiki/Linear_programming

    A covering LP is a linear program of the form: Minimize: b T y, subject to: A T y ≥ c, y ≥ 0, such that the matrix A and the vectors b and c are non-negative. The dual of a covering LP is a packing LP, a linear program of the form: Maximize: c T x, subject to: Ax ≤ b, x ≥ 0, such that the matrix A and the vectors b and c are non-negative.

  4. Semi-infinite programming - Wikipedia

    en.wikipedia.org/wiki/Semi-infinite_programming

    In optimization theory, semi-infinite programming (SIP) is an optimization problem with a finite number of variables and an infinite number of constraints, or an infinite number of variables and a finite number of constraints. In the former case the constraints are typically parameterized.

  5. Dual linear program - Wikipedia

    en.wikipedia.org/wiki/Dual_linear_program

    Suppose we have the linear program: Maximize c T x subject to Ax ≤ b, x ≥ 0. We would like to construct an upper bound on the solution. So we create a linear combination of the constraints, with positive coefficients, such that the coefficients of x in the constraints are at least c T. This linear combination gives us an upper bound on the ...

  6. Simplex algorithm - Wikipedia

    en.wikipedia.org/wiki/Simplex_algorithm

    The variables corresponding to the columns of the identity matrix are called basic variables while the remaining variables are called nonbasic or free variables. If the values of the nonbasic variables are set to 0, then the values of the basic variables are easily obtained as entries in b {\displaystyle \mathbf {b} } and this solution is a ...

  7. Multi-objective linear programming - Wikipedia

    en.wikipedia.org/wiki/Multi-objective_linear...

    This term is misleading because a single efficient point can be already obtained by solving one linear program, such as the linear program with the same feasible set and the objective function being the sum of the objectives of MOLP. [4] More recent references consider outcome set based solution concepts [5] and corresponding algorithms.

  8. Semidefinite programming - Wikipedia

    en.wikipedia.org/wiki/Semidefinite_programming

    A linear programming problem is one in which we wish to maximize or minimize a linear objective function of real variables over a polytope.In semidefinite programming, we instead use real-valued vectors and are allowed to take the dot product of vectors; nonnegativity constraints on real variables in LP (linear programming) are replaced by semidefiniteness constraints on matrix variables in ...

  9. Successive linear programming - Wikipedia

    en.wikipedia.org/wiki/Successive_linear_programming

    Successive Linear Programming (SLP), also known as Sequential Linear Programming, is an optimization technique for approximately solving nonlinear optimization problems. [1] It is related to, but distinct from, quasi-Newton methods .