When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Moving least squares - Wikipedia

    en.wikipedia.org/wiki/Moving_least_squares

    Moving least squares is a method of reconstructing continuous functions from a set of unorganized point samples via the calculation of a weighted least squares measure biased towards the region around the point at which the reconstructed value is requested.

  3. Glossary of mathematical jargon - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_mathematical...

    In the context of proofs, this phrase is often seen in induction arguments when passing from the base case to the induction step, and similarly, in the definition of sequences whose first few terms are exhibited as examples of the formula giving every term of the sequence. necessary and sufficient

  4. Mathematical structure - Wikipedia

    en.wikipedia.org/wiki/Mathematical_structure

    A geometry: it is equipped with a metric and is flat. A topology: there is a notion of open sets. There are interfaces among these: Its order and, independently, its metric structure induce its topology. Its order and algebraic structure make it into an ordered field.

  5. Glossary of arithmetic and diophantine geometry - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_arithmetic_and...

    Arithmetic geometry can be more generally defined as the study of schemes of finite type over the spectrum of the ring of integers. [1] Arithmetic geometry has also been defined as the application of the techniques of algebraic geometry to problems in number theory. [2] See also the glossary of number theory terms at Glossary of number theory

  6. List of mathematical abbreviations - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical...

    def – define or definition. deg – degree of a polynomial, or other recursively-defined objects such as well-formed formulas. (Also written as ∂.) del – del, a differential operator. (Also written as.) det – determinant of a matrix or linear transformation. DFT – discrete Fourier transform.

  7. Ramification (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Ramification_(mathematics)

    In geometry, ramification is 'branching out', in the way that the square root function, for complex numbers, can be seen to have two branches differing in sign. The term is also used from the opposite perspective (branches coming together) as when a covering map degenerates at a point of a space, with some collapsing of the fibers of the mapping.

  8. Glossary of algebraic geometry - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_algebraic_geometry

    In more fancy terms, affine morphisms are defined by the global Spec construction for sheaves of O X-Algebras, defined by analogy with the spectrum of a ring. Important affine morphisms are vector bundles, and finite morphisms. 5. The affine cone over a closed subvariety X of a projective space is the Spec of the homogeneous coordinate ring of X.

  9. Hyperboloid model - Wikipedia

    en.wikipedia.org/wiki/Hyperboloid_model

    In geometry, the hyperboloid model, also known as the Minkowski model after Hermann Minkowski, is a model of n-dimensional hyperbolic geometry in which points are represented by points on the forward sheet S + of a two-sheeted hyperboloid in (n+1)-dimensional Minkowski space or by the displacement vectors from the origin to those points, and m ...