When.com Web Search

  1. Ads

    related to: number of divisors formula example worksheet printable 3rd graders

Search results

  1. Results From The WOW.Com Content Network
  2. Table of divisors - Wikipedia

    en.wikipedia.org/wiki/Table_of_divisors

    A divisor of an integer n is an integer m, for which n/m is again an integer (which is necessarily also a divisor of n). For example, 3 is a divisor of 21, since 21/7 = 3 (and therefore 7 is also a divisor of 21). If m is a divisor of n, then so is −m. The tables below only list positive divisors.

  3. Divisor function - Wikipedia

    en.wikipedia.org/wiki/Divisor_function

    The notations d(n), ν(n) and τ(n) (for the German Teiler = divisors) are also used to denote σ 0 (n), or the number-of-divisors function [1] [2] (OEIS: A000005). When z is 1, the function is called the sigma function or sum-of-divisors function , [ 1 ] [ 3 ] and the subscript is often omitted, so σ ( n ) is the same as σ 1 ( n ) ( OEIS ...

  4. Arithmetic function - Wikipedia

    en.wikipedia.org/wiki/Arithmetic_function

    There is a larger class of number-theoretic functions that do not fit this definition, for example, the prime-counting functions. This article provides links to functions of both classes. An example of an arithmetic function is the divisor function whose value at a positive integer n is equal to the number of divisors of n.

  5. Tau function - Wikipedia

    en.wikipedia.org/wiki/Tau_function

    Divisor function, an arithmetic function giving the number of divisors of an integer Topics referred to by the same term This disambiguation page lists articles associated with the title Tau function .

  6. Refactorable number - Wikipedia

    en.wikipedia.org/wiki/Refactorable_number

    A refactorable number or tau number is an integer n that is divisible by the count of its divisors, ... For example, 18 has 6 divisors (1 and 18, 2 and 9, 3 and 6 ...

  7. Weird number - Wikipedia

    en.wikipedia.org/wiki/Weird_number

    In number theory, a weird number is a natural number that is abundant but not semiperfect. [ 1 ] [ 2 ] In other words, the sum of the proper divisors ( divisors including 1 but not itself) of the number is greater than the number, but no subset of those divisors sums to the number itself.