Ad
related to: nanomaterials examples and applications of engineering research
Search results
Results From The WOW.Com Content Network
Nanotechnology is an active research area that encompasses a number of disciplines such as electronics, bio-mechanics and coatings. These disciplines assist in the areas of civil engineering and construction materials. [22] If nanotechnology is implemented in the construction of homes and infrastructure, such structures will be stronger.
Nanomaterials research takes a materials science-based approach to nanotechnology, leveraging advances in materials metrology and synthesis which have been developed in support of microfabrication research. Materials with structure at the nanoscale often have unique optical, electronic, thermo-physical or mechanical properties. [2] [3] [4]
Understanding the composite nanostructures of such materials and exploring nanomaterials' different applications may lead to the development of new materials with expanded properties, such as electrical conductivity as well as temperature-, moisture- and stress-sensing abilities. [10]
Nanotechnology defined by scale includes fields of science such as surface science, organic chemistry, molecular biology, semiconductor physics, energy storage, [3] [4] engineering, [5] microfabrication, [6] and molecular engineering. [7] The associated research and applications range from extensions of conventional device physics to molecular ...
Ceramic engineering – science and technology of creating objects from inorganic, non-metallic materials. Materials science – interdisciplinary field applying the properties of matter to various areas of science and engineering.
Nanofabrics research is an interdisciplinary effort involving bioengineering, [5] molecular chemistry, physics, electrical engineering, computer science, and systems engineering. [3] Applications of nanofabrics have the potential to revolutionize textile manufacturing [6] and areas of medicine such as drug delivery and tissue engineering. [7]
There is a huge difference between lab-scale and industry-scale applications of 2D nanomaterials due to their intrinsic instability during storage and processing. For example, porous 2D nanomaterial structures have low packing densities, which makes them difficult to pack into dense films.
Nanomanufacturing refers to manufacturing processes of objects or material with dimensions between one and one hundred nanometers. [15] These processes results in nanotechnology, extremely small devices, structures, features, and systems that have applications in organic chemistry, molecular biology, aerospace engineering, physics, and beyond. [16]