When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Tree traversal - Wikipedia

    en.wikipedia.org/wiki/Tree_traversal

    In computer science, tree traversal (also known as tree search and walking the tree) is a form of graph traversal and refers to the process of visiting (e.g. retrieving, updating, or deleting) each node in a tree data structure, exactly once. Such traversals are classified by the order in which the nodes are visited.

  3. Binary tree - Wikipedia

    en.wikipedia.org/wiki/Binary_tree

    In pre-order, we always visit the current node; next, we recursively traverse the current node's left subtree, and then we recursively traverse the current node's right subtree. The pre-order traversal is a topologically sorted one, because a parent node is processed before any of its child nodes is done.

  4. Binary search tree - Wikipedia

    en.wikipedia.org/wiki/Binary_search_tree

    Fig. 1: A binary search tree of size 9 and depth 3, with 8 at the root. In computer science, a binary search tree (BST), also called an ordered or sorted binary tree, is a rooted binary tree data structure with the key of each internal node being greater than all the keys in the respective node's left subtree and less than the ones in its right subtree.

  5. Threaded binary tree - Wikipedia

    en.wikipedia.org/wiki/Threaded_binary_tree

    "A binary tree is threaded by making all right child pointers that would normally be null point to the in-order successor of the node (if it exists), and all left child pointers that would normally be null point to the in-order predecessor of the node." [1] This assumes the traversal order is the same as in-order traversal of the tree. However ...

  6. m-ary tree - Wikipedia

    en.wikipedia.org/wiki/M-ary_tree

    An example of a m-ary tree with m=5. In graph theory, an m-ary tree (for nonnegative integers m) (also known as n-ary, k-ary or k-way tree) is an arborescence (or, for some authors, an ordered tree) [1] [2] in which each node has no more than m children. A binary tree is an important case where m = 2; similarly, a ternary tree is one where m = 3.

  7. Depth-first search - Wikipedia

    en.wikipedia.org/wiki/Depth-first_search

    Depth-first search (DFS) is an algorithm for traversing or searching tree or graph data structures. The algorithm starts at the root node (selecting some arbitrary node as the root node in the case of a graph) and explores as far as possible along each branch before backtracking.

  8. Splay tree - Wikipedia

    en.wikipedia.org/wiki/Splay_tree

    Below there is an implementation of splay trees in C++, which uses pointers to represent each node on the tree. ... Traversal Conjecture: [1] ... in preorder (i.e ...

  9. Graph traversal - Wikipedia

    en.wikipedia.org/wiki/Graph_traversal

    A universal traversal sequence is a sequence of instructions comprising a graph traversal for any regular graph with a set number of vertices and for any starting vertex. A probabilistic proof was used by Aleliunas et al. to show that there exists a universal traversal sequence with number of instructions proportional to O ( n 5 ) for any ...