When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Angular distance - Wikipedia

    en.wikipedia.org/wiki/Angular_distance

    Angular distance or angular separation is the measure of the angle between the orientation of two straight lines, rays, or vectors in three-dimensional space, or the central angle subtended by the radii through two points on a sphere.

  3. Spherical coordinate system - Wikipedia

    en.wikipedia.org/wiki/Spherical_coordinate_system

    In mathematics, a spherical coordinate system specifies a given point in three-dimensional space by using a distance and two angles as its three coordinates. These are the radial distance r along the line connecting the point to a fixed point called the origin; the polar angle θ between this radial line and a given polar axis; [a] and

  4. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    To find the angle of a rotation, once the axis of the rotation is known, select a vector v perpendicular to the axis. Then the angle of the rotation is the angle between v and Rv. A more direct method, however, is to simply calculate the trace: the sum of the diagonal elements of the rotation matrix.

  5. Geographical distance - Wikipedia

    en.wikipedia.org/wiki/Geographical_distance

    Then calculate the central angle in radians between two points (,) and (,) on a sphere using the Great-circle distance method (haversine formula), with longitudes and being the same on the sphere as on the spheroid.

  6. Great-circle distance - Wikipedia

    en.wikipedia.org/wiki/Great-circle_distance

    The great-circle distance, orthodromic distance, or spherical distance is the distance between two points on a sphere, measured along the great-circle arc between them. This arc is the shortest path between the two points on the surface of the sphere. (By comparison, the shortest path passing through the sphere's interior is the chord between ...

  7. Dihedral angle - Wikipedia

    en.wikipedia.org/wiki/Dihedral_angle

    In these cases, one is often interested in the half-planes defined by three consecutive points, and the dihedral angle between two consecutive such half-planes. If u 1, u 2 and u 3 are three consecutive bond vectors, the intersection of the half-planes is oriented, which allows defining a dihedral angle that belongs to the interval (− π, π].

  8. Haversine formula - Wikipedia

    en.wikipedia.org/wiki/Haversine_formula

    The haversine formula determines the great-circle distance between two points on a sphere given their longitudes and latitudes. Important in navigation , it is a special case of a more general formula in spherical trigonometry , the law of haversines , that relates the sides and angles of spherical triangles.

  9. Solution of triangles - Wikipedia

    en.wikipedia.org/wiki/Solution_of_triangles

    For the spherical case, one can first compute the length of side from the point at α to the ship (i.e. the side opposite to β) via the ASA formula ⁡ = ⁡ ⁡ ⁡ (+) + ⁡ ⁡ (), and insert this into the AAS formula for the right subtriangle that contains the angle α and the sides b and d: ⁡ = ⁡ ⁡ = ⁡ + ⁡ ⁡. (The planar ...