Search results
Results From The WOW.Com Content Network
In coordination chemistry and crystallography, the geometry index or structural parameter (τ) is a number ranging from 0 to 1 that indicates what the geometry of the coordination center is. The first such parameter for 5-coordinate compounds was developed in 1984. [ 1 ]
One then refers to a particular element of the array by writing tablename[first index][second index]. The compiler computes the total number of memory cells occupied by each row, uses the first index to find the address of the desired row, and then uses the second index to find the address of the desired element in the row.
and further, G does not act on this geometry, nor does it reflect any of the non-abelian structure (in both cases because the quotient is abelian). However, it is an elementary result, which can be seen concretely as follows: the set of normal subgroups of a given index p form a projective space, namely the projective space
Raising and lowering is then done in coordinates. Given a vector with components , we can contract with the metric to obtain a covector: = and this is what we mean by lowering the index. Conversely, contracting a covector with the inverse metric gives a vector:
The Marshall-Edgeworth index, credited to Marshall (1887) and Edgeworth (1925), [11] is a weighted relative of current period to base period sets of prices. This index uses the arithmetic average of the current and based period quantities for weighting. It is considered a pseudo-superlative formula and is symmetric. [12]
The genus of a 3-dimensional handlebody is an integer representing the maximum number of cuttings along embedded disks without rendering the resultant manifold disconnected. It is equal to the number of handles on it. For instance: A ball has genus 0. A solid torus D 2 × S 1 has genus 1.
In mathematics, and especially in algebraic geometry, the intersection number generalizes the intuitive notion of counting the number of times two curves intersect to higher dimensions, multiple (more than 2) curves, and accounting properly for tangency. One needs a definition of intersection number in order to state results like Bézout's theorem.
In the example of circles, for instance, the moduli space is not just an abstract set, but the absolute value of the difference of the radii defines a metric for determining when two circles are "close". The geometric structure of moduli spaces locally tells us when two solutions of a geometric classification problem are "close", but generally ...