Search results
Results From The WOW.Com Content Network
Tubulin dimers can bind two molecules of GTP, one of which can be hydrolyzed subsequent to assembly. During polymerization, the tubulin dimers are in the GTP-bound state. [12] The GTP bound to α-tubulin is stable and it plays a structural function in this bound state. However, the GTP bound to β-tubulin may be hydrolyzed to GDP shortly after ...
Based on this GTP-cap model, catastrophe happens randomly. The model proposes that an increase in microtubule growth will correlate with a decrease in random catastrophe frequency or vice versa. The discovery of microtubule-associated proteins that change the rate of catastrophe while not impacting the rate of microtubule growth challenges this ...
The β-tubulin subunit is exposed on the plus end of the microtubule, while the α-tubulin subunit is exposed on the minus end. After the dimer is incorporated into the microtubule, the molecule of GTP bound to the β-tubulin subunit eventually hydrolyzes into GDP through inter-dimer contacts along the microtubule protofilament. [17]
Guanosine-5'-triphosphate (GTP) is a purine nucleoside triphosphate. It is one of the building blocks needed for the synthesis of RNA during the transcription process. Its structure is similar to that of the guanosine nucleoside , the only difference being that nucleotides like GTP have phosphates on their ribose sugar.
In cell biology, microtubule nucleation is the event that initiates de novo formation of microtubules (MTs). These filaments of the cytoskeleton typically form through polymerization of α- and β-tubulin dimers, the basic building blocks of the microtubule, which initially interact to nucleate a seed from which the filament elongates. [1]
In molecular biology, treadmilling is a phenomenon observed within protein filaments of the cytoskeletons of many cells, especially in actin filaments and microtubules. It occurs when one end of a filament grows in length while the other end shrinks, resulting in a section of filament seemingly "moving" across a stratum or the cytosol .
This binding can occur with either polymerized or depolymerized tubulin, and in most cases leads to the stabilization of microtubule structure, further encouraging polymerization. Usually, it is the C-terminal domain of the MAP that interacts with tubulin, while the N-terminal domain can bind with cellular vesicles, intermediate filaments or ...
Formins regulate the actin and microtubule cytoskeleton [3] [4] and are involved in various cellular functions such as cell polarity, cytokinesis, cell migration and SRF transcriptional activity. [5] Formins are multidomain proteins that interact with diverse signalling molecules and cytoskeletal proteins, although some formins have been ...