When.com Web Search

  1. Ad

    related to: explain the heisenberg uncertainty principle

Search results

  1. Results From The WOW.Com Content Network
  2. Uncertainty principle - Wikipedia

    en.wikipedia.org/wiki/Uncertainty_principle

    Uncertainty principle of Heisenberg, 1927. The uncertainty principle, also known as Heisenberg's indeterminacy principle, is a fundamental concept in quantum mechanics. It states that there is a limit to the precision with which certain pairs of physical properties, such as position and momentum, can be simultaneously known. In other words, the ...

  3. Heisenberg's microscope - Wikipedia

    en.wikipedia.org/wiki/Heisenberg's_microscope

    Heisenberg's microscope is a thought experiment proposed by Werner Heisenberg that has served as the nucleus of some commonly held ideas about quantum mechanics. In particular, it provides an argument for the uncertainty principle on the basis of the principles of classical optics .

  4. Quantum fluctuation - Wikipedia

    en.wikipedia.org/wiki/Quantum_fluctuation

    3D visualization of quantum fluctuations of the quantum chromodynamics (QCD) vacuum [1]. In quantum physics, a quantum fluctuation (also known as a vacuum state fluctuation or vacuum fluctuation) is the temporary random change in the amount of energy in a point in space, [2] as prescribed by Werner Heisenberg's uncertainty principle.

  5. Umdeutung paper - Wikipedia

    en.wikipedia.org/wiki/Umdeutung_paper

    Mathematically, Heisenberg showed the need of non-commutative operators. This insight would later become the basis for Heisenberg's uncertainty principle. This article was followed by the paper by Max Born and Pascual Jordan of the same year, [4] and by the 'three-man paper' (German: drei Männer Arbeit) by Born, Heisenberg and Jordan in 1926.

  6. Quantum limit - Wikipedia

    en.wikipedia.org/wiki/Quantum_limit

    A quantum limit in physics is a limit on measurement accuracy at quantum scales. [1] Depending on the context, the limit may be absolute (such as the Heisenberg limit), or it may only apply when the experiment is conducted with naturally occurring quantum states (e.g. the standard quantum limit in interferometry) and can be circumvented with advanced state preparation and measurement schemes.

  7. Zero-point energy - Wikipedia

    en.wikipedia.org/wiki/Zero-point_energy

    Zero-point energy is fundamentally related to the Heisenberg uncertainty principle. [91] Roughly speaking, the uncertainty principle states that complementary variables (such as a particle's position and momentum, or a field's value and derivative at a point in space) cannot simultaneously be specified precisely by any given quantum state. In ...

  8. Conjugate variables - Wikipedia

    en.wikipedia.org/wiki/Conjugate_variables

    In quantum mechanics, these same pairs of variables are related by the Heisenberg uncertainty principle. The energy of a particle at a certain event is the negative of the derivative of the action along a trajectory of that particle ending at that event with respect to the time of the event.

  9. Copenhagen interpretation - Wikipedia

    en.wikipedia.org/wiki/Copenhagen_interpretation

    However, no such text exists, and the writings of Bohr and Heisenberg contradict each other on several important issues. [3] It appears that the particular term, with its more definite sense, was coined by Heisenberg around 1955, [16] while criticizing alternative "interpretations" (e.g., David Bohm's [17]) that had been developed.