When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Sudoku solving algorithms - Wikipedia

    en.wikipedia.org/wiki/Sudoku_solving_algorithms

    Some hobbyists have developed computer programs that will solve Sudoku puzzles using a backtracking algorithm, which is a type of brute force search. [3] Backtracking is a depth-first search (in contrast to a breadth-first search), because it will completely explore one branch to a possible solution before moving to another branch.

  3. Conflict-driven clause learning - Wikipedia

    en.wikipedia.org/.../Conflict-Driven_Clause_Learning

    This examples uses three variables (A, B, C), and there are two possible assignments (True and False) for each of them. So one has = possibilities. In this small example, one can use brute-force search to try all possible assignments and check if they satisfy the formula. But in realistic applications with millions of variables and clauses ...

  4. Clique problem - Wikipedia

    en.wikipedia.org/wiki/Clique_problem

    The brute force algorithm finds a 4-clique in this 7-vertex graph (the complement of the 7-vertex path graph) by systematically checking all C(7,4) = 35 4-vertex subgraphs for completeness. In computer science , the clique problem is the computational problem of finding cliques (subsets of vertices, all adjacent to each other, also called ...

  5. Brute-force search - Wikipedia

    en.wikipedia.org/wiki/Brute-force_search

    Brute force attacks can be made less effective by obfuscating the data to be encoded, something that makes it more difficult for an attacker to recognise when he has cracked the code. One of the measures of the strength of an encryption system is how long it would theoretically take an attacker to mount a successful brute force attack against it.

  6. Dynamic programming - Wikipedia

    en.wikipedia.org/wiki/Dynamic_programming

    Brute force consists of checking all assignments of zeros and ones and counting those that have balanced rows and columns (n / 2 zeros and n / 2 ones). As there are 2 n 2 {\displaystyle 2^{n^{2}}} possible assignments and ( n n / 2 ) n {\displaystyle {\tbinom {n}{n/2}}^{n}} sensible assignments, this strategy is not practical except maybe up to ...

  7. Proof by exhaustion - Wikipedia

    en.wikipedia.org/wiki/Proof_by_exhaustion

    Proof by exhaustion, also known as proof by cases, proof by case analysis, complete induction or the brute force method, is a method of mathematical proof in which the statement to be proved is split into a finite number of cases or sets of equivalent cases, and where each type of case is checked to see if the proposition in question holds. [1]

  8. Travelling salesman problem - Wikipedia

    en.wikipedia.org/wiki/Travelling_salesman_problem

    One of the earliest applications of dynamic programming is the Held–Karp algorithm, which solves the problem in time (). [24] This bound has also been reached by Exclusion-Inclusion in an attempt preceding the dynamic programming approach. Solution to a symmetric TSP with 7 cities using brute force search.

  9. Maze-solving algorithm - Wikipedia

    en.wikipedia.org/wiki/Maze-solving_algorithm

    Robot in a wooden maze. A maze-solving algorithm is an automated method for solving a maze.The random mouse, wall follower, Pledge, and Trémaux's algorithms are designed to be used inside the maze by a traveler with no prior knowledge of the maze, whereas the dead-end filling and shortest path algorithms are designed to be used by a person or computer program that can see the whole maze at once.