Ad
related to: how does reinforcement learning work
Search results
Results From The WOW.Com Content Network
Reinforcement learning (RL) is an interdisciplinary area of machine learning and optimal control concerned with how an intelligent agent should take actions in a dynamic environment in order to maximize a reward signal. Reinforcement learning is one of the three basic machine learning paradigms, alongside supervised learning and unsupervised ...
In machine learning, reinforcement learning from human feedback (RLHF) is a technique to align an intelligent agent with human preferences. It involves training a reward model to represent preferences, which can then be used to train other models through reinforcement learning .
Various techniques exist to train policies to solve tasks with deep reinforcement learning algorithms, each having their own benefits. At the highest level, there is a distinction between model-based and model-free reinforcement learning, which refers to whether the algorithm attempts to learn a forward model of the environment dynamics.
Reinforcement learning is a behavioral learning model where the algorithm provides data analysis feedback, directing the user to the best result. It enables an agent to learn through the ...
Q-learning is a model-free reinforcement learning algorithm that teaches an agent to assign values to each action it might take, conditioned on the agent being in a particular state. It does not require a model of the environment (hence "model-free"), and it can handle problems with stochastic transitions and rewards without requiring ...
Proximal policy optimization (PPO) is a reinforcement learning (RL) algorithm for training an intelligent agent.Specifically, it is a policy gradient method, often used for deep RL when the policy network is very large.
In reinforcement learning, the environment is typically represented as a Markov decision process (MDP). Many reinforcements learning algorithms use dynamic programming techniques. [56] Reinforcement learning algorithms do not assume knowledge of an exact mathematical model of the MDP and are used when exact models are infeasible.
State–action–reward–state–action (SARSA) is an algorithm for learning a Markov decision process policy, used in the reinforcement learning area of machine learning.It was proposed by Rummery and Niranjan in a technical note [1] with the name "Modified Connectionist Q-Learning" (MCQ-L).