Ad
related to: metric tensor explained diagram labeled
Search results
Results From The WOW.Com Content Network
The metric tensor is an example of a tensor field. The components of a metric tensor in a coordinate basis take on the form of a symmetric matrix whose entries transform covariantly under changes to the coordinate system. Thus a metric tensor is a covariant symmetric tensor.
In general relativity, the metric tensor (in this context often abbreviated to simply the metric) is the fundamental object of study.The metric captures all the geometric and causal structure of spacetime, being used to define notions such as time, distance, volume, curvature, angle, and separation of the future and the past.
The metric tensor is a central object in general relativity that describes the local geometry of spacetime (as a result of solving the Einstein field equations). Using the weak-field approximation, the metric tensor can also be thought of as representing the 'gravitational potential'. The metric tensor is often just called 'the metric'.
The Einstein field equations (EFE) may be written in the form: [5] [1] + = EFE on the wall of the Rijksmuseum Boerhaave in Leiden, Netherlands. where is the Einstein tensor, is the metric tensor, is the stress–energy tensor, is the cosmological constant and is the Einstein gravitational constant.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
The tetrad formalism is an approach to general relativity that generalizes the choice of basis for the tangent bundle from a coordinate basis to the less restrictive choice of a local basis, i.e. a locally defined set of four [a] linearly independent vector fields called a tetrad or vierbein. [1]
where g is the metric tensor (see below). A vector can be specified with covariant coordinates (lowered indices, written v k ) or contravariant coordinates (raised indices, written v k ). From the above vector sums, it can be seen that contravariant coordinates are associated with covariant basis vectors, and covariant coordinates are ...
In mathematics, the signature (v, p, r) [clarification needed] of a metric tensor g (or equivalently, a real quadratic form thought of as a real symmetric bilinear form on a finite-dimensional vector space) is the number (counted with multiplicity) of positive, negative and zero eigenvalues of the real symmetric matrix g ab of the metric tensor with respect to a basis.
Ad
related to: metric tensor explained diagram labeled