When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Secant line - Wikipedia

    en.wikipedia.org/wiki/Secant_line

    The secant lines PQ are the approximations to the tangent line. In calculus, this idea is the geometric definition of the derivative. The tangent line at point P is a secant line of the curve. A tangent line to a curve at a point P may be a secant line to that curve if it intersects the curve in at least one point other than P.

  3. Tangent - Wikipedia

    en.wikipedia.org/wiki/Tangent

    The geometrical idea of the tangent line as the limit of secant lines serves as the motivation for analytical methods that are used to find tangent lines explicitly. The question of finding the tangent line to a graph, or the tangent line problem, was one of the central questions leading to the development of calculus in the 17th century.

  4. Differential calculus - Wikipedia

    en.wikipedia.org/wiki/Differential_calculus

    [b] Even though the tangent line only touches a single point at the point of tangency, it can be approximated by a line that goes through two points. This is known as a secant line. If the two points that the secant line goes through are close together, then the secant line closely resembles the tangent line, and, as a result, its slope is also ...

  5. Trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/Trigonometric_functions

    Here, the poles are the numbers of the form (+) for the tangent and the secant, or for the cotangent and the cosecant, where k is an arbitrary integer. Recurrences relations may also be computed for the coefficients of the Taylor series of the other trigonometric functions.

  6. Calculus - Wikipedia

    en.wikipedia.org/wiki/Calculus

    Tangent line at (x 0, f(x 0)). The derivative f′(x) of a curve at a point is the slope (rise over run) of the line tangent to that curve at that point. Differential calculus is the study of the definition, properties, and applications of the derivative of a function. The process of finding the derivative is called differentiation. Given a ...

  7. Tangent–secant theorem - Wikipedia

    en.wikipedia.org/wiki/Tangentsecant_theorem

    The tangent-secant theorem can be proven using similar triangles (see graphic). Like the intersecting chords theorem and the intersecting secants theorem, the tangent-secant theorem represents one of the three basic cases of a more general theorem about two intersecting lines and a circle, namely, the power of point theorem.

  8. Tangent lines to circles - Wikipedia

    en.wikipedia.org/wiki/Tangent_lines_to_circles

    No tangent line can be drawn through a point within a circle, since any such line must be a secant line. However, two tangent lines can be drawn to a circle from a point P outside of the circle. The geometrical figure of a circle and both tangent lines likewise has a reflection symmetry about the radial axis joining P to the center point O of ...

  9. Numerical differentiation - Wikipedia

    en.wikipedia.org/wiki/Numerical_differentiation

    As h approaches zero, the slope of the secant line approaches the slope of the tangent line. Therefore, the true derivative of f at x is the limit of the value of the difference quotient as the secant lines get closer and closer to being a tangent line: ′ = (+) ().