When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. List of formulae involving π - Wikipedia

    en.wikipedia.org/wiki/List_of_formulae_involving_π

    where H is the hypervolume of a 3-sphere and r is the radius. S V = 2 π 2 r 3 {\displaystyle SV=2\pi ^{2}r^{3}} where SV is the surface volume of a 3-sphere and r is the radius.

  3. Machin-like formula - Wikipedia

    en.wikipedia.org/wiki/Machin-like_formula

    In mathematics, Machin-like formulas are a popular technique for computing π (the ratio of the circumference to the diameter of a circle) to a large number of digits.They are generalizations of John Machin's formula from 1706:

  4. List of mathematical constants - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_constants

    A mathematical constant is a key number whose value is fixed by an unambiguous definition, often referred to by a symbol (e.g., an alphabet letter), or by mathematicians' names to facilitate using it across multiple mathematical problems. [1]

  5. Pi - Wikipedia

    en.wikipedia.org/wiki/Pi

    The number π (/ p aɪ / ⓘ; spelled out as "pi") is a mathematical constant, approximately equal to 3.14159, that is the ratio of a circle's circumference to its diameter.It appears in many formulae across mathematics and physics, and some of these formulae are commonly used for defining π, to avoid relying on the definition of the length of a curve.

  6. Radian - Wikipedia

    en.wikipedia.org/wiki/Radian

    One radian is defined as the angle at the center of a circle in a plane that subtends an arc whose length equals the radius of the circle. [6] More generally, the magnitude in radians of a subtended angle is equal to the ratio of the arc length to the radius of the circle; that is, =, where θ is the magnitude in radians of the subtended angle, s is arc length, and r is radius.

  7. Euler's identity - Wikipedia

    en.wikipedia.org/wiki/Euler's_identity

    Euler's identity asserts that is equal to −1. The expression e i π {\displaystyle e^{i\pi }} is a special case of the expression e z {\displaystyle e^{z}} , where z is any complex number . In general, e z {\displaystyle e^{z}} is defined for complex z by extending one of the definitions of the exponential function from real exponents to ...

  8. Small-angle approximation - Wikipedia

    en.wikipedia.org/wiki/Small-angle_approximation

    The opposite leg, O, is approximately equal to the length of the blue arc, s. Gathering facts from geometry, s = Aθ , from trigonometry, sin θ = ⁠ O / H ⁠ and tan θ = ⁠ O / A ⁠ , and from the picture, O ≈ s and H ≈ A leads to: sin ⁡ θ = O H ≈ O A = tan ⁡ θ = O A ≈ s A = A θ A = θ . {\displaystyle \sin \theta ={\frac ...

  9. List of common physics notations - Wikipedia

    en.wikipedia.org/wiki/List_of_common_physics...

    kilogram per cubic meter (kg/m 3) diameter: meter (m) distance: meter (m) direction: unitless impact parameter meter (m) differential (e.g. ) varied depending on context differential vector element of surface area A, with infinitesimally small magnitude and direction normal to surface S