Search results
Results From The WOW.Com Content Network
In the matrix notation, the adjacency matrix of the undirected graph could, e.g., be defined as a Boolean sum of the adjacency matrix of the original directed graph and its matrix transpose, where the zero and one entries of are treated as logical, rather than numerical, values, as in the following example:
In the mathematical field of algebraic graph theory, the degree matrix of an undirected graph is a diagonal matrix which contains information about the degree of each vertex—that is, the number of edges attached to each vertex. [1]
In the special case of a finite simple graph, the adjacency matrix is a (0,1)-matrix with zeros on its diagonal. If the graph is undirected (i.e. all of its edges are bidirectional), the adjacency matrix is symmetric. The relationship between a graph and the eigenvalues and eigenvectors of its adjacency matrix is studied in spectral graph theory.
A graph with three vertices and three edges. A graph (sometimes called an undirected graph to distinguish it from a directed graph, or a simple graph to distinguish it from a multigraph) [4] [5] is a pair G = (V, E), where V is a set whose elements are called vertices (singular: vertex), and E is a set of unordered pairs {,} of vertices, whose elements are called edges (sometimes links or lines).
An example of an undirected ... In the case of a graph, the adjacency matrix is a square matrix which indicates ... have real weights with = { (,). ...
According to Robbins' theorem, an undirected graph may be oriented in such a way that it becomes strongly connected, if and only if it is 2-edge-connected. One way to prove this result is to find an ear decomposition of the underlying undirected graph and then orient each ear consistently. [12]
The oriented incidence matrix of an undirected graph is the incidence matrix, in the sense of directed graphs, of any orientation of the graph. That is, in the column of edge e, there is one 1 in the row corresponding to one vertex of e and one −1 in the row corresponding to the other vertex of e, and all other rows have 0.
The adjacency matrix of a simple undirected graph is a real symmetric matrix and is therefore orthogonally diagonalizable; its eigenvalues are real algebraic integers. While the adjacency matrix depends on the vertex labeling, its spectrum is a graph invariant , although not a complete one.