Search results
Results From The WOW.Com Content Network
The additional lipid radical (L•) continues the chain reaction, whilst the lipid hydroperoxide (LOOH) is the primary end product. [6] The formation of lipid radicals is sensitive to the kinetic isotope effect. Reinforced lipids in the membrane can suppress the chain reaction of lipid peroxidation. [7]
Another method of termination is the reaction between a lipid radical and a lipid peroxide, or the combination of two lipid peroxide molecules, resulting in stable nonreactive molecules. [4] [5] Reinforced lipids that become part of the membrane if consumed with heavy isotope diet also inhibit peroxidation. [6]
Deuterium-reinforced lipids can be used for protecting living cells by slowing the chain reaction of lipid peroxidation. [1] The lipid bilayer of the cell and organelle membranes contain polyunsaturated fatty acids (PUFA) are key components of cell and organelle membranes. Any process that either increases oxidation of PUFAs or hinders their ...
The systematic name of this enzyme class is glutathione:lipid-hydroperoxide oxidoreductase. Other names in common use include peroxidation-inhibiting protein , PHGPX , peroxidation-inhibiting protein: peroxidase, glutathione , (phospholipid hydroperoxide-reducing) , phospholipid hydroperoxide glutathione peroxidase , hydroperoxide glutathione ...
4-Hydroxynonenal, or 4-hydroxy-2E-nonenal or 4-hydroxy-2-nonenal or 4-HNE or HNE, (C 9 H 16 O 2), is an α,β-unsaturated hydroxyalkenal that is produced by lipid peroxidation in cells. 4-HNE is the primary α,β-unsaturated hydroxyalkenal formed in this process. It is a colorless oil.
Assay of TBARS measures malondialdehyde (MDA) present in the sample, as well as malondialdehyde generated from lipid hydroperoxides by the hydrolytic conditions of the reaction. [4] MDA is one of several low-molecular-weight end products formed via the decomposition of certain primary and secondary lipid peroxidation products.
The antioxidant enzyme glutathione peroxidase 4 (GPX4) belongs to the family of glutathione peroxidases, which consists of 8 known mammalian isoenzymes (GPX1–8).GPX4 catalyzes the reduction of hydrogen peroxide, organic hydroperoxides, and lipid peroxides at the expense of reduced glutathione and functions in the protection of cells against oxidative stress.
Malondialdehyde results from lipid peroxidation of polyunsaturated fatty acids. [3] It is a prominent product in thromboxane A2 synthesis wherein cyclooxygenase 1 or cycloxygenase 2 metabolizes arachidonic acid to prostaglandin H2 by platelets and a wide array of other cell types and tissues.