Ad
related to: gcse maths reciprocal examples
Search results
Results From The WOW.Com Content Network
The harmonic mean of a set of positive integers is the number of numbers times the reciprocal of the sum of their reciprocals. The optic equation requires the sum of the reciprocals of two positive integers a and b to equal the reciprocal of a third positive integer c. All solutions are given by a = mn + m 2, b = mn + n 2, c = mn.
The reciprocal function: y = 1/x.For every x except 0, y represents its multiplicative inverse. The graph forms a rectangular hyperbola.. In mathematics, a multiplicative inverse or reciprocal for a number x, denoted by 1/x or x −1, is a number which when multiplied by x yields the multiplicative identity, 1.
Multiplicative inverse, in mathematics, the number 1/x, which multiplied by x gives the product 1, also known as a reciprocal; Reciprocal polynomial, a polynomial obtained from another polynomial by reversing its coefficients; Reciprocal rule, a technique in calculus for calculating derivatives of reciprocal functions; Reciprocal spiral, a ...
A prime p (where p ≠ 2, 5 when working in base 10) is called unique if there is no other prime q such that the period length of the decimal expansion of its reciprocal, 1/p, is equal to the period length of the reciprocal of q, 1/q. [8] For example, 3 is the only prime with period 1, 11 is the only prime with period 2, 37 is the only prime ...
For example, the reciprocal function, () =, tends to infinity as tends to When both the numerator and the denominator tend to zero at the same input, the expression is said to take an indeterminate form , as the resulting limit depends on the specific functions forming the fraction and cannot be determined from their separate limits.
In mathematics, a reciprocity law is a generalization of the law of quadratic reciprocity to arbitrary monic irreducible polynomials () with integer coefficients. Recall that first reciprocity law, quadratic reciprocity, determines when an irreducible polynomial f ( x ) = x 2 + a x + b {\displaystyle f(x)=x^{2}+ax+b} splits into linear terms ...
Reciprocal polynomials have several connections with their original polynomials, including: deg p = deg p ∗ if is not 0.; p(x) = x n p ∗ (x −1). [2]α is a root of a polynomial p if and only if α −1 is a root of p ∗.
In calculus, the reciprocal rule gives the derivative of the reciprocal of a function f in terms of the derivative of f. The reciprocal rule can be used to show that the power rule holds for negative exponents if it has already been established for positive exponents.