Search results
Results From The WOW.Com Content Network
This is a list of some well-known periodic functions. The constant function f ( x ) = c , where c is independent of x , is periodic with any period, but lacks a fundamental period . A definition is given for some of the following functions, though each function may have many equivalent definitions.
A periodic function, also called a periodic waveform (or simply periodic wave), is a function that repeats its values at regular intervals or periods. The repeatable part of the function or waveform is called a cycle . [ 1 ]
Download as PDF; Printable version ... is a list of recurring ... wave – Navier–Stokes equations – Partial differential equation – Periodic function ...
Thomae's function: is a function that is continuous at all irrational numbers and discontinuous at all rational numbers. It is also a modification of Dirichlet function and sometimes called Riemann function. Kronecker delta function: is a function of two variables, usually integers, which is 1 if they are equal, and 0 otherwise.
If f is a mean periodic function, then it is the limit of a certain sequence of exponential polynomials which are finite linear combinations of term t^^n exp(at) where n is any non-negative integer and a is any complex number; also Df is a mean periodic function (ie mean periodic) and if h is an exponential polynomial, then the pointwise product of f and h is mean periodic).
A (purely) periodic sequence (with period p), or a p-periodic sequence, is a sequence a 1, a 2, a 3, ... satisfying . a n+p = a n. for all values of n. [1] [2] [3] If a sequence is regarded as a function whose domain is the set of natural numbers, then a periodic sequence is simply a special type of periodic function.
Of particular importance is the fact that the L 1 norm of D n on [,] diverges to infinity as n → ∞.One can estimate that ‖ ‖ = (). By using a Riemann-sum argument to estimate the contribution in the largest neighbourhood of zero in which is positive, and Jensen's inequality for the remaining part, it is also possible to show that: ‖ ‖ + where is the sine integral
In mathematical analysis, Parseval's identity, named after Marc-Antoine Parseval, is a fundamental result on the summability of the Fourier series of a function. The identity asserts the equality of the energy of a periodic signal (given as the integral of the squared amplitude of the signal) and the energy of its frequency domain representation (given as the sum of squares of the amplitudes).