When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Analytic function - Wikipedia

    en.wikipedia.org/wiki/Analytic_function

    In mathematics, an analytic function is a function that is locally given by a convergent power series. There exist both real analytic functions and complex analytic functions. Functions of each type are infinitely differentiable, but complex analytic functions exhibit properties that do not generally hold for real analytic functions.

  3. Analytic function of a matrix - Wikipedia

    en.wikipedia.org/wiki/Analytic_function_of_a_matrix

    In mathematics, every analytic function can be used for defining a matrix function that maps square matrices with complex entries to square matrices of the same size. This is used for defining the exponential of a matrix , which is involved in the closed-form solution of systems of linear differential equations .

  4. Holomorphic function - Wikipedia

    en.wikipedia.org/wiki/Holomorphic_function

    Though the term analytic function is often used interchangeably with "holomorphic function", the word "analytic" is defined in a broader sense to denote any function (real, complex, or of more general type) that can be written as a convergent power series in a neighbourhood of each point in its domain.

  5. Function of several complex variables - Wikipedia

    en.wikipedia.org/wiki/Function_of_several...

    As in complex analysis of functions of one variable, which is the case n = 1, the functions studied are holomorphic or complex analytic so that, locally, they are power series in the variables z i. Equivalently, they are locally uniform limits of polynomials; or locally square-integrable solutions to the n-dimensional Cauchy–Riemann equations.

  6. Mathematical analysis - Wikipedia

    en.wikipedia.org/wiki/Mathematical_analysis

    Complex analysis is particularly concerned with the analytic functions of complex variables (or, more generally, meromorphic functions). Because the separate real and imaginary parts of any analytic function must satisfy Laplace's equation, complex analysis is widely applicable to two-dimensional problems in physics.

  7. Analytic continuation - Wikipedia

    en.wikipedia.org/wiki/Analytic_continuation

    In complex analysis, a branch of mathematics, analytic continuation is a technique to extend the domain of definition of a given analytic function.Analytic continuation often succeeds in defining further values of a function, for example in a new region where the infinite series representation which initially defined the function becomes divergent.

  8. Non-analytic smooth function - Wikipedia

    en.wikipedia.org/wiki/Non-analytic_smooth_function

    Approximation of the smooth-everywhere, but nowhere-analytic function mentioned here. This partial sum is taken from k = 2 0 to 2 500. A more pathological example is an infinitely differentiable function which is not analytic at any point. It can be constructed by means of a Fourier series as follows. Define for all

  9. Transcendental function - Wikipedia

    en.wikipedia.org/wiki/Transcendental_function

    The fourteenth function () denotes the analytic extension of the factorial function via the gamma function, and () is its reciprocal, an entire function. Finally, in the last function f 16 ( x ) {\displaystyle f_{16}(x)} , the exponent x {\displaystyle x} can be replaced by k x {\displaystyle kx} for any nonzero real k {\displaystyle k} , and ...