When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Trigonometric interpolation - Wikipedia

    en.wikipedia.org/wiki/Trigonometric_interpolation

    In mathematics, trigonometric interpolation is interpolation with trigonometric polynomials. Interpolation is the process of finding a function which goes through some given data points . For trigonometric interpolation, this function has to be a trigonometric polynomial, that is, a sum of sines and cosines of given periods.

  3. Polynomial interpolation - Wikipedia

    en.wikipedia.org/wiki/Polynomial_interpolation

    A Lozenge diagram is a diagram that is used to describe different interpolation formulas that can be constructed for a given data set. A line starting on the left edge and tracing across the diagram to the right can be used to represent an interpolation formula if the following rules are followed: [5]

  4. Neville's algorithm - Wikipedia

    en.wikipedia.org/wiki/Neville's_algorithm

    In mathematics, Neville's algorithm is an algorithm used for polynomial interpolation that was derived by the mathematician Eric Harold Neville in 1934. Given n + 1 points, there is a unique polynomial of degree ≤ n which goes through the given points. Neville's algorithm evaluates this polynomial.

  5. Linear interpolation - Wikipedia

    en.wikipedia.org/wiki/Linear_interpolation

    Given the two red points, the blue line is the linear interpolant between the points, and the value y at x may be found by linear interpolation. In mathematics, linear interpolation is a method of curve fitting using linear polynomials to construct new data points within the range of a discrete set of known data points.

  6. Simpson's rule - Wikipedia

    en.wikipedia.org/wiki/Simpson's_rule

    Simpson's 1/3 rule, also simply called Simpson's rule, is a method for numerical integration proposed by Thomas Simpson. It is based upon a quadratic interpolation and is the composite Simpson's 1/3 rule evaluated for =.

  7. Lagrange polynomial - Wikipedia

    en.wikipedia.org/wiki/Lagrange_polynomial

    A better form of the interpolation polynomial for practical (or computational) purposes is the barycentric form of the Lagrange interpolation (see below) or Newton polynomials. Lagrange and other interpolation at equally spaced points, as in the example above, yield a polynomial oscillating above and below the true function.

  8. Hermite interpolation - Wikipedia

    en.wikipedia.org/wiki/Hermite_interpolation

    The Hermite interpolation problem is a problem of linear algebra that has the coefficients of the interpolation polynomial as unknown variables and a confluent Vandermonde matrix as its matrix. [3] The general methods of linear algebra, and specific methods for confluent Vandermonde matrices are often used for computing the interpolation ...

  9. Thiele's interpolation formula - Wikipedia

    en.wikipedia.org/wiki/Thiele's_interpolation_formula

    The problem of generating a function whose graph passes through a given set of function values is called interpolation. This interpolation formula is named after the Danish mathematician Thorvald N. Thiele. It is expressed as a continued fraction, where ρ represents the reciprocal difference: